PASCAL USERS GROUP Bﬂ« (;2 7 B[yuSﬁ C&ff

Pascal News

NUMBER 17

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS
MARCH, 1980

e el et 2 4

Yy -
A



PASCAL NEWS #17

Contributors to this iss

EDITOR

Here & There
Books & Articles
Applications
Standards
Implementation N
Administration

MARCH, 1989 INDEX

N a POLICY, COUPONS, INDEX, ETC.
1 EDITOR'S CONTRIBUTION
2 HERE AND THERE WITH Pascal
2 Tidbits
5 Pascal in the news
6 Books
7 Book Review: Alagic & Arbib
8 Articles
9 Conferences and Seminars
12 ADA: an ISO report
13 Pascal in teaching
17 APPLICATIONS
17 Introduction
18 REFERENCER -- a cross referencer for procedures
29 MAP -- a macro processor for Pascal
41 XREF -- a cross reference program
46 A string package - OMSI
47 A complex arithemetic package
52 A string package - U. of Witwaterstrand
53 ARTICLES
54 "Conformant Arrays in Pascal" -- A.H.J. Sale !!note!!
L 57 "Pascal Survey" -- Robert R. Ransom ,
N 59 "Converting an Application Program from OMSI to AAEC"
60 "Does Scope = Block in Pascal?" -~ T.P. Baker
62 "A Note on Pascal Scopes" -- T.P. Baker
63 "Alternate Approach to Type Equivalence" - W.MacGregor
65 "Fixing Pascals I/0" =-- R. Cichelli
66 "SIMPASCAL" -~ J. Deminet
68 "Some Observations on Pascal and Personal Style"- Sale
71 OPEN FORUM FOR MEMBERS
83 Pascal Standards Progress Report
85 IMPLEMENTATION NOTES
85 Editorial
86 Implementation Critiques
89 Validation Suite Reports
191 Checklists

ue (#17) were:

Rick Shaw
John Eisenberg
Rich Stevens
Rich Cichelli, Andy Mickel
Jim Miner, Tony Addyman
otes Bob Dietrich
Moe Ford, Kathy Ford, Jennie Sinclair



JOINING PASCAL USER'S GROUP?

- Membership is open to anyone: Particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.

- Please enclose the proper prepayment (check payable to "Pascal User's
Group"); we will not bill you.

- Please do not send us purchase orders; we cannot endure the paper work!

- When you join PUG any time within an academic year: July 1 to June 30, you
will receive all issues of Pascal News for that year.

- We produce Pascal News as a means toward the end of promoting Pascal and
communicating news “of events surrounding Pascal to persons interested in
Pascal. We are simply interested in the news ourselves and prefer to share
it through Pascal News. We desire to minimize paperwork, because we have
other work to do.

- American Region (North and South America): Send $6.00 per year to the
address on the reverse side. International telephone: 1-404-252-2600.

- European Region (Europe, North Africa, Western and Central Asia): Join
through PU Send £4.00 per year to: Pascal Users Group, c/o Computer
Studies Group, Mathematics Department, The University, Southampton S09 5NH,
United Kingdom; or pay by direct transfer into our Post Giro account
(28 513 4000); International telephone: 44-703-559122 x700.

- Australasian Region (Australia, East Asia - incl. Japan): PUG(AUS). Send
$AB8.00 per year to: Pascal Users Group, c/o Arthur Sale, Department of
Information Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania
7001, Australia. International telephone: 61-02-23 0561 x435

PUG(US/ ) produces Pascal News and keeps all mailing addresses on a common
list. Regional representatives collect memberships from their regions as a
service, and they reprint and distribute Pascal News using a proof copy and
mailing labels sent from PUG(USA). Persons in the Australasian and European
Regions must join through their regional representatives. People in other
places can join through PUG(USA).

RENEWING?

- Please renew early (before August) and please write us a line or two to tell
us what you are doing with Pascal, and tell us what you think of PUG and
Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

- Our unusual pollcy of automatically sending all issues of Pascal News to
anyone who joins within a academic year (July 1 to June 30) means that we
eliminate many requests for backissues ahead of time, and we don't have to
reprint important information in every issue--especially about Pascal
implementations!

- Issues 1 .. 8 (January, 1974 - May 1977) are out of print.

(A few copies of issue 8 remain at PUG(UK) available for £2 each.)

- Issues 9 .. 12 (September, 1977 - June, 1978) are available from PUG(USA)
all for $10.00 ard from PUG(AUS) all for $A10.

- Issues 13 .. 16 are available from PUG(UK) all for £6; from PUG(AUS) all for
$A10; and from PUG(USA) all for $10.00.

- Extra single copies of new issues (current academic year) are: $3.00 each
- PUG(USA); £2 each - PUG(UK); and $A3 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

- Your experiences with Pascal (teaching and otherwise), ideas, letters,
opinions, notices, news, articles, conference announcements, reports,
implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 18.5
cm wide) form.

- All letters will be printed unless they contain a request to the contrary.



[ ]
1]

[ ]

------ ALL-PURPOSE COUPON - - - - = - (17-Mar-80)

Pascal User's Group, c/o Rick Shaw
Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342 USA

*hote*

Membership is for an academic year (ending June 30th).

Membership fee and All Purpose Coupon is sent to your Regional
Representative.

SEe THE PoLicYy SECTION ON THE REVERSE SIDE FOR PRICES AND
ALTERNATE ADDRESS if you are located in the European or
Australasian Regions.

Membership and Renewal are the same price.

The U. S. Postal Service does not forward Pascal News.

[ 11 year ending June 30, 1980
Enter me as a new member for:

[ ] 2 years ending June 30, 1981
Renew my subscription for:

[ 1 3 years ending June 30, 1982

! '
Send Back Issue(s) ! !

My new/correct address/phone is listed below

Enclosed please find a contribution, idea, article or opinion
which is submitted for publication in the Pascal News.

Comments:
! $ !
! ENCLOSED PLEASE FIND: A% !
! Ed . !
! !

NAME

ADDRESS

PHONE

COMPUTER

DATE




POLICY: PASCAL USERS GROUP (17-Mar-80)

Purpose: The Pascal User's Group (PUG) pramotes the use of the programing
language Pascal as well as the ideas behind Pascal through the
vehicle of Pascal News. PUG is intentionally designed to be non
political, and as such, it is not an "entity" which takes stands on
issues or support causes or other efforts however well-intentioned.
Informality is our guiding principle; there are no officers or
meetings of PUG.

The increasing availability of Pascal makes it a viable alternative
for software production and justifies its further use. We all
strive to make using Pascal a respectable activity.

Membership: Anyone can join PUG, particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.
Memberships from libraries are also encouraged. See the
ALL-PURPOSE COUPON for details.

Facts about Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general-purpose (but -not all-purpose)
programming language possessing algorithmic and data structures to aid
systematic programming. Pascal was intended to be easy to learn and read by
humans, and efficient to translate by camputers.

Pascal has met these goals and is being used successfully for:
* teaching programming concepts
* developing reliable "production" software
* implementing software efficiently on today's machines
* writing portable software

Pascal implementations exist for more than 105 dif.erent computer systems, and
this number increases every month. The "Implementation Notes" section of
Pascal News describes how to obtain them.

The standard reference and tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.

Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.

Introductory textbooks about Pascal are described in the "Here and There"
section of Pascal News.

The programing language, Pascal, was named after the mathematician and
religious fanatic Blaise Pascal (1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individual member's group. We currently
have more than 3357 active members in more than 41 countries. this year
Pascal News is averaging more than 120 pages per issue.

Adljod



P_licy

POLICY: PASCAL NEWS (17-Mar-80)

Pascal News is the official but informal publication of the User's Group.

Pascal News contains all we (the editors) know about Pascal; we use it as
the vehicle to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately succumb to the reality of:

1. Having to insist that people who need to know "about Pascal" join PUG
and read Pascal News - that is why we spend time to produce it!

2. Refusing to return phone calls or answer letters full of questions - we
will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquiries has at the
"econcentrators" (our phones and mailboxes). We are trying honestly to say:
"We cannot promise more that we can do."

Pascal News is produced 3 or 4 times during an academic year; usually in

September, November, February, and May.

ALL THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and

18.5 cm linesT)

Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST
TO THE CONTRARY.

Pascal News is divided into flexible sections:
POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal
for various algorithms, and software tools for a Pascal environment; news
of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance,
style, output convenience, and general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among
members which is of interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
implementations as well as where to send bug reports. Qualitative and
quantitative descriptions and comparisons of various implementations are
publicized. Sections contain information about Portable Pascals, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.



APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requestor:
(Company name if requestor is a company)

Phone Number:

Name and address to which information should
be addressed (Write "as above" if the same)

Signature of requestor:

Date:

In makiné this application, which should be signed by a responsible person in the
case of a company, the requestor agrees that:

a) The Validation Suite is recognized as being the'copyrighted, proprietary prop-
erty of R. A. Freak and A.H.J. Sale, and

b) The requestor will not distribute or otherwise make available machine-readable
copies of the Validation Suite, modified or unmodified, to any third party
without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and doc-
umentation contained in the Validation Suite for the purpose of compiler validation,
acceptance tests, benchmarking, preparation of comparative reports, and similar pur-
poses, and to make available the 1listings of the results of compilation and execution
of the programs to third parties in the course of the above activities. In such doc-
uments, reference shall be made to the original copyright notice and its source.

Distribution charge: $50.00

Make checks payable to ANPA/RI in US dollars drawn on a US bank.
Remittance must accompany application. Mail request to:
Source Code Delivery Medium Specification: ANPA/RI
9-track, 800 bpi, NRZI, Odd Parity, 600' Magnetic Tape P.0. Box 598
Easton, Pa. 18042
( ) ANSI-Standard USA
Attn: R.J. Cichelli
a) Select character code set:

() ASCII ( ) EBCDIC

b) Each logical record is an 80 character card image.
Select block size in logical records per block.
()40 ()20 ()10

( ) Special DEC System Alternates:
( ) RSX-IAS PIP Format
( ) DOS-RSTS FLX Format

Office use only
Signed
Date

Richard J. Cichelli
On behalf of A.H.J. Sale & R.A. Freak



PASCAL NEWS #17 MARCH, 1980 PAGE 1

Editor’s Contribution

GETTING STARTED

Let me start my first editorial by saying, "I can't believe how hard this job
ist!" My esteem for Andy Mickel has always been high, but after the last few
months, it has gone up astronomically! I don't know how one person had all
the time--there are so manv things to do, and I have been lucky enough to have
alot of help.

My section editors have been very prompt (for the most part!) and have made
the job "do-able". And, I might add, PUG has hired some part-time clerical
help that is out of this world! To round it off, the switch to a commercial
printer (oh, the luxury of a university print shop) has been quite successful.
I could not ask for better service. Their prices are close to those we paid
in the past.

My thanks

must go to the membership, who have been so patient with me. This issue
represents a tremendous learning curve for me (and culture shock!). Things
will go smoother starting next issue. B

NEXT ISSUE (#18) - SPECIAL!!

Speaking of next issue, we at PUG are pleased to announce that the next one
will be completely devoted to the ISO Draft Standard for Pascal. (See Jim
Miner's article this issue for a discussion of this and other items concerning

standards.)
We are currently preparing this document for reproduction; it will be out no
| later than one month after this issue (#17).

ABOUT THIS ISSUE

WOW!! Is there alot of good stuff in this issue! Pascal has been on
everyone's tongue lately, so "Here and There" is chock full of "newsy"
information. We also have a large number of books and articles that have been
reviewed this quarter, as well as an excellent in-depth review of the text

Alagic and Arbib by one of our readers. (We could use more contributions such
as this.)

The "Articles" section is kicked off by lucid discussion of "Conformant Array
Parameters" authored by Arthur Sale (who else!). This article is highly
recommended for review by all readers because of its controversial, proposed
inclusion into the IS0 standard.

There is no lack of contributions to the "Software Tools" section either.
Nearly one-quarter of the issue is devoted to publishing programs and
algorithms. This quarter many checklists are included in the "Implementation

Notes" section, as well as some contributions to ur new section, "Validation
Suite Reports".

A great deal of fine work went into this issue. We hope you like it.

|




i
i

IR e =

Here and There With Pascal

TTTTTTT
T
T
T
T
T
T IDRITS

J. Mack Adams, Comp. Sci Dept., Box 3CU, New Mexfco State University, Las
Cruces, NM B8001: "We have added an assertional checking capability tp UCSD
Pascal and have developed a debugging system based on assertional chetking
and symbolic execution. A paper on the system will be presented at ACM
79..." (*79/05/14%)

Ron Barstad, P.0. Box 6000, B-118, Phoenix, AZ 85005: "The Pascal on the
(*USW Louistiana*) L68 (Multics) 18 only a subset. The L66 version from
Waterloo is a full blown batch and/or TSS version. (%#79/09/14%)

Dre Oddur Benediktsson, Science Institute, University of Tceland, Dunhaga 3,
Reykjavik: "We...are looking for a PASCAL compiler for...our PDP-11 RSX-11M
syatem and so far have found only the OMSI product which we find a bit on
the expensive side at $1500. We would also rather have the P-code type
compiler {f available. Can you make any suggestions? (*78/11/23%)

Rick Boggs, Nationwide Insurance, One Natiomside Plaza, Columbus, OH 43216:
“Our problem is one of finding a Pascal implementation which matches our
operating environment: a large-scale IBM/AMDAHL center running MVS 3.7

and ...hoth the TSO and VSPC interactive systems." (*79/10/10%)

Paul C. Boyd, PPG Industries, Box R, Elwin-Mt. Zion Rd., Mt. Zion, IL 62549:
"We are hoping to implement the OMSI PASCAL-l package on a DEC
PDP-11/34...under RSX-11/M...to develop process control programs to run on a
network of DEC LST-11/23 micros.... I would appreciate hearing from any OMSI
PASCAL -l users with experience in digital control applications.”
(%79/09/27%)

Glenn A. Burklund, 3903 Carolyn Ave., Fairfax, VA 22031: "Have North Star
(UCSD) Pascal-~-~1t 18 miserable. Going Pascal/Z...for scientifc and
engineering applications. The funct. & proc. are th main features of
interest. It {s virtually aimpossible to tmplement under North Star
Pascal. Unless it 1s practical to implement these calls easily, Pascal will
wither on the vine." (*79/10/09%)

John D. Bush, Minnesota Power & Light Co., 30 Weat Superior St., Duluth, MN
55802: "I have been trying to get programmers and DP Managers at MPEL
interested in Pascal. By finding compilers for our Prime and TBM machines, I
hope to give some of these people a chance to experiment with the Tanguage.”
(*79/10/03%)

Jim Carlson, School of Dentistry, University of the Pacific, 2155 Wehster
St., San Francisco CA 94115: '"The School of Dentistry has recently acquired
an Omsi Pascal Compiler...configured to operate under RSX~11M and will be
installed on a PDP-11/34. We plan to use Pascal primarily for
administrative purposes, but it will also be available for uses in other
areas." (%*79/05/22%)

M. B. Clausing, 5603 Fisher Dr., Dayton, OH 45424: "Tf the matter’s stil] at
issne, T vote not to affilfate with ACM. 1T see no particular advantage."
(*79/07/06%*)

L cnp——————

N

John Corliss, Loyola University of Chicago, 6525 N. Sheridan Road, Chicago,
IL 60026: "Loyola University...has acquired the Pascal compiler from the
University of Manitoba for academic instructional use...we are
(*interested*) in acquiring PASCAL subroutine libraries that we could use in
our computer science classes.” (*79/05/14%)

Don R. Couch, 5100 Montreal Dr., San Jome, CA 95130: "T am a student in a
Cogswell College Pancal courme, and use Pamcal on a PDP-11/10 compiter at
American Micromyatems, Tnc." (*no date®)

R. H. Frank, Pig{tal Conmultfng Corporation, P.0. Rox 32505, San .Jose, (A
95152: “Our company has just released a Pascal Compiler (P2 derivative) for
the popular CP/M microcomputer system." (%79/09/26%)

Jim Gagne, M.D., Datamed Research, 1433 Roscomare Rd., Los Angeles, CA
90024: "Who’s your medical applications editor (if any)? I°11 do 1t if you
need." (*79/05/30%)

Anton L. Gilbert, Information Sciences, U.S. Army White Sands Missile Range,
NM 88002: "I am a new Pascal users. It will be used in my research
group...on a PDP-11/70, PDP-11/35, a PDP~11/34 (* all under RSX~11M) and a
PDP-ll/l§ (RT-11). One of my employees...is especially interested in Pascal
in Image Processing Research."” (*79/06/12%)

Ricardo 0. Giovannone, Box 3606, University Park Branch, Las Cruces, NM
88003: "I am a graduate student at New Mexico State University...using this
language since fall “78 and I really like {t.... At the moment, I am working
in a project dealing with implementation of an Fducational Data Base System
using Pascal as a host language. ...We hope to finish in this fall. We are
using UCSD Pascal Version 1.4." (*79/08/20%)

Mark Gordon, Computer Business Systems, Box 421, Truro, Nova Scotia B2N 5C5:
"I am using a DEC PDP-11 under RSTS/E". (*79/05/23%)

Roedy Green, 1478 Fast 27th Avenue, Vancouver, British Columbia V5N 2WS:
"I’m loking after a computer acquisitfon for the provincial Flectric and Gas
utility. I'm looking forward to using Pascal to implement our records & man
scheduling system. At preasent Burroughs 1800, DEC PDP~11/70, Tandem, lnivac
1100, Cyber 170 are all potential winners. I am particularly interested in
Pascal on these machines." (*79/09/04%)

David L. Hamby, Combustion Fngineering, INc., 1000 Prospect Hill Rd.,
Windsor, CT 06095: "Interests are real time process monitoring. Looking for
process support software in a machine {ndependent high level language.”
(*79/06/18%)

M. L. Harper, Oak Ridge National lLahs, Bldg. 1505, Rm. 118, Oak Ridge, TN
37830: "1 have pursued your references at JPL regarding a Pascal for ModComp
minicomputers and the prospecta look promiaing.' (#*79/06/26%)

David C. E. Holmes, P.0. Box 1708, Grafton, VA 23692: Teacher of
micro-computer design, system design, and programming. owns 48K Z80 Altatr
8800, CP/M, UCSD Pascal, and Ithica Intersystem Pascal/7 compiler.
(*79/10/29%)

Mike Hughes, P.0. Box 93, Rapid City, SD 57709: "T am currently about three
fourths of the way there on a business-oriented Pascal compiler for
second-generation BCD machines. The implementation {s for the RCA 301, but
the problems are similar to the IBM 1401 and 1620, Burroughs B600, etc. I
would be interested in getting in touch with anyone else having such
Quixotic interests.” (*no date*)

G. P. Janas, 4447 Buchanan, Warren, MI 48092: "I own an Apple ]1{ with two
disk drives. 1 have on order, since September, the Apple Language Card and
am awaiting same."” (*79/10/18%)

WIN TYISYd

~
2

[T#

086T "HIYYW

39vd

-



Peter T. Jawbsen, Ceremain Microsystems, 759 Glen Canyon Rd., Santa Cruz, CA
95060: "I use both UCSD and OMSI Pascal." (*79/09/09%)

John W. Jensen, Jensen Farms, RR#l Box 142, Everly, IA 51338: "I have been
working on computer programs for a complete feedlot management system for
about 4 years. The programs are written in RPG and run on an IBM System 34
which...I am losing access toe.... T...am wiling to look at something in the
$10-15000 range not counting software...(* here follows a description of
hardware being considered *) Basic is the most popular language...but I'm
not convinced that Basic is the best language to program in. Pascal has
been called the goftware superstar. Yet it appears to me to be rather slow
in being accepted. 1 have seen very little commerical software available
(such as accounting packages, etc.)." (*79/10/01%)

Donéld R. Kelley, 2451 Hingham Court, Woodbridge, VA 22192: "Just getting
started using Pascal - have been working with assembly and BASIC."
(*79/10/01%)

Wallace Kendall, 9002 Dunloggin Rd., Ellicott City, MD 21043: "I have an OSI
Challenger III and have been trying for some time to get Pascal for it.
Althought 1t has a Z80 chip (as well as a 6502 and a 6800) OSI apparently
used a slightly different {mplementation, and the version used by most 280
computers (I°m told) doesn’t run on OST. HOwever, I'm told that it will soon
be ready elther for the 6502 or the Z80 in OSI." (*79/05/07*)

Jack Laffe, 320 19th Ave. S., Minneapolis, MN 55454: "Re: machine dependent
implementations: remove NCR 200 implementation that is listed in News #9/10
p. 105. This has been replaced by an NCR 8400 implementation and will be
available February 1980. 1 will make more information available at that
time." (*79/08/07%)

W. A. Lane, Canadtan Tire Corporation, Limited, Box 770, Station K, Toronmto,
ONtario M4P 2V8: "We are a large retalling company in Canada with
approximately 315 stores country wide. We are presently implementing "point
of Sale" systems in these stores and are utilizing Datapoint, NCR and Amdahl
computers. We also have several other machines including TBM system 34°s,
1V Phase and Basic mini’s." (*%79/08/22%)

James H. Lauterbach, Genesys Corporation, 223 Alexander Ave., Upper
Montclair, NJ 07043: "Genesys Corporation...(*wighes*) to feature “canned’
applications programs which are easily customized...hence, ocur development
system will probably be configured largely with C Basic and Paacal
capability in mind~-especially Pascal. Our quandary, at present, revolves
arund the...relative merits of UCSD Pascal, the Per Brinch Hansen sequential
version, the Intersystems Pascal/Z, the Alpha Micro version, the new 6809
Motorola version, the soon to be released Data General Micro NOva version,
etc. etc. etc. Can you kindly bring some {llumination to us?" (* no date *)

C. E. Leonard, 14008 S.E. Harrison, Portland, OR 97233: "I presently own an
Exidy Sorcerer (Z80) with 32K and want to implement Pascal to go with my one
year of Pascal atudies at Portland Community College." (*79/08/31%)

Jerry LeVan, Eastern Kentucky University, Richmond, KY 40475: "I have
extended Pascal-S with strings, scalars, graphics, execution profiler and
many features useful 'in a teaching environment - runs under RSTS on a
PDP-11/70." (*79/06/11%)

Robert C. Luckey, M.D., P.S., 1110 Gillmore Ave., Richland, WA 99352: "It 1s
with distress that I read in the truly excellent issue 13 of your (*Andy’s*)
withdrawal from active lead position. You obviously have that combination
of talent to co-ordinate a complex development such as that of a new high
level computer language. None of the alternatives offered to the present
arrangement at all compares with what we have now." (*79/03/26%)

Phong Thanh Ly, 6415 Prospect Terrace, Alexandria, VA 22310: "I am currently
using Pascal on a PDP-11 and am going to have a Pascal compiler for the
Honeywell Level-6 very soon.” (*no date?*)

Gregory A. Marks, Institute for Social Research, University of Michigan,
SQR(A), MI 48106: "All I ever hear about UCSD Pascal is the good comments.

Where can I get the opposite viewpoints; the problem in their extensions and
implementation." (*79/06/29%)

Richard R. Martin, 634 Dallas Ave. #21, Grand Prairie, TX 75050: "I am
running the UCSD Pascal on my Z80 system and am interested in keeping up
with other implementations. My use for Pascal is in writing a CAT system

with color graphics (RAMTEK). For a livin, 1 manage a comput t "
RPN ' g puter store.

M. E. Markovitz, Culp & Tanner, Inc., 585 Manzanita Suite 6, Chico, CA
95926: "I am trying to build up a Pascal scientific library and would like
to see if anyone else could lend me a hand.

P.S. Does the user’s group have
such a scientific library?" (*79/07/23%)

Sakari M. Mattila, Lokkalantie 18 B 43, SF-00330 Hels{inki 33, Finland: "I am
a computer scientist at Technical Research Centre of Finland, EDP research

division. We have University of Minnesota Pascal 6000 release 3 on CDC and
some other on minis.' (*79/07/07%)

Frank Monaco, 679 Lowell Drive, Marietta, GA 30060: "Keep up the good work."
(*79/03/09%)

Jerry Moore, Dunn, Moore & Assoclates, 2935 E. Broadway, Suite 201, Tuscon,
AZ 85716: "We are a systems house in Tucson working primarily with
Perkin-Elmer (Interdata) and Alpha Microsystems minicomputers. We have a
project slightly outside our normal sphere of influence, and...for which
Pascal 18 most desirable. (*The project is*) a hydrologic model of complex
irrigation systems for Saudi Arabian Naval base (* which *) must run on an
IBM 3032 in Saudi Arabia. Development will have to be done on DEC
system...unless I can find some IBM 370 time nearby. T would be very

appreciative 1f you would consider my plight briefly and forward any
suggestions.™ (*79/09/04%)

Hal Morris, Prindle and Patrick Architects:planners, 199 S. Fifth St.,
Columbus, OH 43215: "The company...is an architecture firm which has a PDP-
11/34 running RT-11 and TSX. Our applications are Accounting, Word
Processing, and some statistics and simulation.... My own impression is
that C and Pascal are quite complementary, C being a better systems

language, and Pascal being better for many, or even most applications."
(*79/10/17%)

Gregory L. Nelson, Apt. 31, 2280 California St., Mountain View, CA 94040:
"Have {mplemented Swedtsh Pascal V5 and NBS Pascal Vi.4d (a preliminary
version) under RSX-11M V3.1 on a PDP-11/70 system. Roth Pascals lack
operating system linkages sufficient to consider them for systems
implementation." (*79/03/12%)

Neil Overton, Computer Systems and Services, Inc., Box 31407, Daltas, TX
75231: "I wanted an accounting package 1n Pascal or BASIC to be converted to
run on & TI 990/2 for a large non-chaln restaurant." (*79/09/05%)

Craig Payne, Enertec, 19 Jenkins Ave., Lansdale, PA 19446: “We are actively
using Concurrent Pascal to write real time programs for the ZBO., The
language has been extended to allow the writing of device drivers directly
in C.P.; the interpreter/kernel knows nothing about TI/0." (*79/06/05*)

Raymond E. Penley, 3578F Kelly Circle, Bolling AFB, DC 20336: "Just
purchased Pascal/Z from Ithaca Intersystems. This is a 280 compiler that
makes assembly code directly from the Pascal source. Will let you know more
when I get 1t running. I don’t have enough memory right now." (%79/09/24%)

Martin ?. Peritsky, Bendix Corporation, P.0. Drawer 831, Lewisburg, WV
24901: "I am available for membership on standardization committees, etc. I

am a member of IEEE and ISA. One of my specialties is compiler design."
(*79/10/30%)

LT# SMIN TYISYd

0861 “HIY¥VY

39vd




Stephen A. Pifts, 305 Jarman Dr., Midwest City, OK 73110: "I have ordered
Apple Computer’s Pascal system for my Apple ) [." (*79/08/24%)

Stephen M. Platt, 4060 Irving St., Philadelphia, PA 19104: "In my work (CS
grad student U. of P.) people are starting to prefer Pascal to FORTRAN for
reasons of portability(!) and ease of use. From my own view, it’s a choice
of hours debugging 100 lines of FORTRAN or not having to debug 700-1000
lines of Pascal...you get the idea. Keep up the good work." (*79/09/13%*)

Michael §. Plesher, RDI Box 258, Hoewell, NJ 08525: "I am currently using
the AAEC compiler on an IBM 370/168 (RCA, Cherry Hill NJ). They also have a
Pascal P4 compiler.'” (%79/08/05+%)

Hardy J. Pottinger, EE Dept., Univ. of Missouri Rolla, Rolla, MO 65401: "We
are using University of Lancaster’s implementation for Nova from Gamma Tech
under RDOS and DOS. Like {t a lot. We will be experimenting with
microcomputer versions and concurrent Pascal during coming year."
(*79/08/01%)

Fred W. Powell, P.0O. Box 2543, Staunton, VA 22401: "I have been working
primarily on a TI 990/10 computer which has a TI supported Pascal compiler.
I expect to soon be using a TI 990/5 system which does not currently support
the Pascal compiler. 1f TI does not change that problem soon, T intend to
put the Pascal P compiler on that system. Thanks for your help and for the
good job you are doing with PUG." (*79/10/0R*) John Purvis, Sperry Univac
Computer Systems, 55 City Centre Dr., Missisaugua, Ontario L5B 1M4: "I am &
software {nstructor with Sperry Univac in Toronto. Our Mini Computer
Operation ia becoming involved with Pascal, sa I am very {nterested in
finding out what 1s happening with a Pascal user group." (*79/08/24%)

Frederick A. Putnam, Joseph R. Mares Asst. Prof., Dept. of Chemical
Engineering, Massachusetts Institute of Technology, Cambrdige, MA 02139:
"Here in the Chemical Engineering Department, we have a Data General Eclipse
running (among other things) Gemma Techunology’s Pascal." (*79/10/17%)

Holly Robinson, Winthrop Publishers, Inc., 17 Dunster St., Cambridge, MA
02138: "We are about to publish two titles which will be of considerable
interest to your PASCAL NEWS readership: PROGRAMMING FOR POETS: A GENTLE
INTRODUCTION USING PASCAL, by Conway & Archer; and A PRIMER ON PASCAL by the
same authors."” (*79/10/03%)

Armando R. Rodriguez, P.0. Box 5771, Stanford, CA 94305: "I am in charge of
the compilers for Pascal at LOTS, SAIl, GSB, SUMFX, and SCORE at Stanford,
all of them DEC-10 or DEC-20. I am preparing a note on our improved version
of the Hamburg compiler for DEC-10 and DEC-20." (%*79/06/21%)

Wayne Rosing, Digital Equipment Corp., TW~C03, 1925 Andover St., Tewksbury
MA 01876: "I was a 12/15/78 lost soul. I figured for $4/year you had gone
out of business or you folks had been eaten by a FORTRAN compiler. (I‘m on
UCSD now but want to get a 32-bit Zurich version up on a 68000, demand
paging of f an 8 {nch Winchester hard disk.)" (*79/08/20%)

Louis V. Ruffino, Federal Systems Nivision, IBM, 1R100 Frederick Pike,
Gajthersburg MD 20854: "Your puhs are excellent, but keep up the great
work. .

I look forward to PUG just like BYTE!" (*79/07/09%)

Carl Sandin, 314 Shadow Creek Dr., Seabrook, TX 77586: "I have a 50L-20,
with North Star disks and Diablo printer. I’m trying to get started in
North Star Pascal.' (*79/08/06%)

Robert H. Scheer, CDP, Sheridan Oaks Cyhernetics, 1915 Larkdale Dr.,
Glenview, IL 60025: "I have had some limited experience with Pascal on an
Alpha Micro system and expect to start a project on a North Star Horizon
microcomputer system before the year i8 over. I am also an instructor im
computer science at Northwestern University’s Division of Continuing
Education in Chicago. 1 am investipating the possiblity of using Pascal as
a means of teaching structured programming techniques.' (*07/07/09%)

R. C. Shaw, The Crange, Spring Brank New M{1ls, Nr Stockport, Cheshire, SKI2
4BH: "1 would be intereated in information on Pascal implementations on
either Argus 700 or Modular One machines." (*07/09/13%)

Thomas W. Sidle, Technical Staff, Scientific Calculations, Inc., 4245-B
Capitola, CA 95010: "We are interested in bringing up Pascal on VAX11/780,
Prime 400 (and larger), and IBM 370/148 (end larger) computers."
(*07/07/24%)

Connie Jo Sillin, Kansas City Southern Industries, Inc. 114 W. 11th St.,
Kansas City, MO 64105: "We at KCSI are interested in the Pascal programming
language and the compiler for Pascal. We now have the 1BM 370/158 and 3032
(08-V52) aoon to he 3033 (MVS).

T. R. Simonson, G.M. Simonson & T.R. Simonson Consulting Fngineers, 612
Howard Street, San Francisco, CA 94105: "I realize that PUG may have simply
collapsed. I certainly hope not, for I have thoroughly enjoyed the
contact. 1 believe you stated that some cross compilers exist for creating
8080 or ZBO machine code. If you know of one for CDC machines I would
appreciate your jotting down the source." (*79/10/12%)

Lee L. C. Sorenson, 10226 Victoria Ave, Whittier, CA 90604: "1 do not yet
have a large enough system for Pascal, but T hope to learn from your group
and to implement it in my system some day." (*79/06/07%)

T. J. Sullivan, 712 Rand Ave., Oakland, CA 94610: "I work with BART (*Bay
Area Rapid Transit*) and am a neophyte to Pascal but am highly interested in
all aspects of the language; particularly interested in programming for real
time process control.'" (*79/06/07%)

Kevin Talbot, 3029 127th Place S.E., Bellevue, WA 98005: "The system I use
is an HP3000 (Pascal P/3000 by Fraley, et. al.)" (*no date*)

Ron Teany, President, G.W. Tenny Co. 1Inc., 3721 Scottsville Rd., Box A,
Scottsville, NY 14546: "We are currently using a DFC 11/34 with 256KB
memory, eight terminals, two printers, and dual 20MB drives in a business
application environment. We want to implement Pascal wnder RSTS/E (CTS-500)
and are looking for a good DBMS package to go with the Pascal code."

Wilitam W. Tunnicliffe, Bobst Graphic, INc., P.O. Box 462, Bohemia, NY
11716: "Thanks, volunteers!" (*79/08/20%)

Rex M. Venator, Major USA, 12451 Skipper Circle, Woodbridge, VA 22192:
"While working on my Masters at Georgia Tech I became a Pascal ‘fanatic’ and
since then my enthusiasm has not diminished. T attempt to follow all aspets
of the language from the standardization efforts to Pascal’s first
descendant ADA {in DOD. 1 would most certainly like to join your group and
provide what assistance I can from an unofficial DOD perspective."”
(*79/05/16%)

Dick Wattson, 10 Dutton St. S., Manchester, NH 03104: "1 surely would
preciate info on PDP-11 compilers (RT-!1 compatible)." (%*79/10/31%)

Anna Watson, 3705 Delwood Drive, Panama City, FL 32407: "Don’t be
discouraged, Andy. You're putting out a really interesting publication. I
expect to use it as a reference tool later." (*79/08/12%)

[T# SHIN TY¥ISYd

0861 "'154Yd

h 39vd



Sydney S. Weinstein, CDP, CCP, 170 Centennfal Road, Warminster, PA 18974:
"I am now working for Fischer and Porter Company, and am developing data
communications software for local networks for them. We use C as our main
development language, but are also looking at Pascal especially as it
develops for the PDP-11 and 8086 computers. Pascal {s the basis of our new
"experimental’ process control language.' (*79/08/19%)

Tom Westhoff, Willmark A.V.T.1., Box 1097, Willmar, MN 56201: “Are there any
Pascal implementations for Ohio Scientific Challenger 11 disk systems?"
(*79/09/07%)

Rodney E. Willard, M.D., Loma Linda Medical Center Clinfcal Laboratory, Loma
Linda, CA 92350: "I am trying to get a 280 UCSD-CP/M system together and
running.' (*no date¥)

R. 5. Wood, 260 Trafalgar Lane, Alken, SC 2980l: "I'm a research analyst
working for the DuPont Company at the Savannah River Laboratory. My
interests in Pascal are both personal i.e., on a home micro and
professional. The company is looking into the possiblity of using a Pascal
based ‘black~box’ between our big main frames and any arbitrary
microcomputer to make the micros look like all the other IBM-TSO terminals
in the shop." (*79/07/03%)

Max Wunderlich, c¢/o Textronix, Inc., P.O. Box 500, Beaverton, OR 97077:
"Both of us (*Max Wunderlich & Steve Jumonville*) are software engineers for
Tektronix, Inc. We are presently using OMSI Pascal for production testing
purposes on an LSI-11/2 with RT-11." (*no date*)

Richard Yensen, Ph.D., clinical Psychologist, 2403 Talbot Road, Baltimore,
MD 21216: "I am running UCSD Pascal version I.5 on a Heathkit H-11 Computer
with 32K words of 16 bit memory. The computer is a 16 bit machine."
(*79/07/01%)

Fred Zeise, lMata Systems Design, 3130 Coronado Drive, Santa Clara CA: "We
are using ESI/OMS] Pascal and will be getting UCSD Pascal 1.5 soon."
(*79/05/07%)

PPPPPP

P P

P P

PPPPPP

P

P

P ASCAL IN THE NEWS

JOBS ;

(* Note~these listings are intended primarily to show that there are indeed
openings for Pascsl programmers "out there'". By the time you see these
listings, the jobs may well be filled. *)

Control Data Corporation, Communications Systems Division, 3285 E. Carpenter
Avenue, P.0. Box 4380-P, Anaheim, CA 92803: "Professional openings exist in
the areas of data communications netowrk, message switching and front-end
systems. Expertenced candidates should be familiar in any of the

following: Assembly/Pascal/Algol languages, Microprocessors, Real Time
Systems, Communications protocols, test procedure development, test tool
development." Contact Jess Holguin, (*Computerworld 79/09/24%)

Hewlett-Packard, West 120 Century Road, Paramus, NI 07652: "We have
opportunities both in Commercial and Scientific areas. Sclentific
experience is desired using FORTRAN, Assembler, BASIC, Pascal, data base,
data communicetions with real-time operating systems. (*79/10/12%)

V.P. Personnel SS160, New York Times: 'Minimum of 1 year experience.
Prograrming experlence with Pascal, PLM, P11, ALGOL, or FORTRAN" V.P.
Personnel S$160 Times (*79/10/28%)

Perkin-Elmer Corporation, Main Avenue, NOrwalk, CT 06856: Looking for a
micro-computer programmer whose responsibilities include "developing high
level language (PL/1,Pascal) techniques to improve software development for
micro~computers. (*79/10/28%)

MANUFACTURERS® ADVERTISEMENTS:

Apple Computer Co.,10260 Bandley Drive, Cupertino, CA 95014: Vartous
advertisements for thelr version of UCSD Pascal

Columbia Data Products, Inc, 9050 Red Branch Road, Columbia, MD 21045
Advertising "a unique family of computer systems, the Commander series”
which will run Pascal under CP/M. (* Computer Design, October 1979%)

Enertec, & company in Pennsylvania, has sent a flyer about their version of
concurrent Pascal, which runs on the HP3000, and has an interpreter /kernel
for a Z-80 Micro-computer. P-code for a given program is “about one-third
the size of the P-code from Brinch-Hansen’s concurrent Pascal compiler.” On
the z-80, "execution speed at 4MHz 1s fast enough to handle 1200 baud
terminals with all 1/0 to the IN, OUT level written in Concurrent Pascal.
P-codes execute in 20 microseconds (push constant) to 500 microseconds
(divide, context switch)

Pertec Computer Corp, Chatsworth, CA advertises a "Pascal Blaiser software
development system, intended for systems and real-time applications
programming,” with 64K RAM, 1 megabyte of mass storage. The CPU directly
executes Pascal; price 18 $5995 1in single~unit quantities. (*Mini-Micro
Systems October 1979%)

Rational Data Systems, 245 W 55th St., New York, NY 10019: has provided a
Pascal that is "compatible with the entire (*Data General*) line - from
Eclipse to microNova. All verslons are source compatible and each can
cross-compile for any of the other systems. The A0S version is priced at
$3500." (*Computer Design, October 1979%)

Southwest Technical Products Corp., 219 W. Rhapsody, San Antonio, TX 78216
advertises the $/09 with MC6809 processor. "Both multiuser and
multitasking/multiuser operating systems are avallable for the §/09. BASIC,
Pascal, and an Assembler are immediately available." Cost with 128K bytes
of RAM {8 $2995.

Sperry Univac Minicomputer OPerations, 2722 Michelson Dr., Irvine, CA 92713
has various advertisements for the Structured Programming System (SPS)
running under thelr SUMMIT operating system which supports a Pascal
compiler, debugger, program formatter, and concordance program. SPS also
includes a text editor and document formatter.

Stirling/Bekdorf, 4407 Parkwood, San Antonio, TX 78218, advertises
combination coding and CRT layout sheets to 'speed software development and
documentation for Pascal programmers". Two pads of 50 cost $26.85 plus
$3.25 for handling.

Texas Instruments: Various advertisements for the DS990 Model which runs
Pascal on a system that stores "up to 4,600,000 characters using
double-sided, double-density diskette storage'. Also advertisements In
various places for their Microprocessor Pascal System with source editor,
compiler, host debugger, configurator, native~code generator, and run-time
support.

[T# SKIN YISV

0861 “HIYYW

S 39vd




Three Rivers Computer Corp., 160 N. Craig St., Pittsburgh, PA. 15213: has a
stand-alone system that can take up to 1 Megabyte of RAM, with interactive
graphics (1024 lines on a 15-inch screen), and a speech output module. Mass
storage is provided by 12 Megabyte Winchester disk drive with a 24 Megabyte
disk option. "The unit contains a 16-bit processor that operates with
P-Code, a high-level {nstruction language based on Pascal. The processor
can reportedly execute in excess of one million P-Codes per second. The
system’s memory has a 32-bit segmented virtual addressing mechanism," and
has 4K bytes of writable microstore as an option. (*Computerworld,
79/10/22%)

NEWSLETTERS & ARTICLES:

David A. Mundie has an article on the relative merits of Pascal vs. BASIC 1n
Recreational Computing, Sept-Oct 1979. Tt concludes with '"Most Pascal
lovers are deeply committed to portability and standardization. It is not
our fault that BASIC dialects have proliferated so wildly that there exists
no standard BASIC to compare with Pascal.”

Arthur Sale passes on a note from Computing, ! November 1979, which mentions
that the European Space Agency (FSA) will be using concurrent Pascal "to
program ESA’s latest venture into the simulation of satellite subsystems,
the Multiple Processor Reconfigurable Simulator.”

The Big Byte (University of Calgary) notes in its September 1979 issue that
"the development of a Pascal compiler under Multics 1is near completion.”

Early Warninpg Newsletter (University of Nehraska Computer Network) has a
"new release of Stanford Pascal. This version 1s a considerable {mprovement
over previous versions. For the most part, changes to the system are
enhancements and will not affect Pascal programs that ran under the previous
version." A change has been made to nested comments, giving a compiler
option to make constructs such as (* x:=y (* comment *) *) legal or produce
an error as the user desires. (* 79/09/13%)

Log On (Massey lUniversity Computer Centre), notes that "We are to implement
a Pascal compiler” for a newly-acquired IBM Series/l minicomputer. 1In usage
statistics for the B6700, Pascal comes in second place with 10% of usage
(981 accesses) during June 1979. (*July 1979%)

ICSA Newsletter (Rice University, Houston TX), tells "Pascal users don’t
despair. Although Pascal is currently not available at ICSA, we hope to

remedy the situation soon. Plans are underway to install Pascal 8000 this
fall." (*79/09/17%)

AR AR AR A b b A A

BOOKS ABOUT_PASCAL

Alagic, S. and Arbib, M. 8., The Design of Well-structured and Correct Programs,
Springer-Verlag, 1978, 292 pages.

Bowles, K. L., Microcomputer Problem Solving Using Pascal, Springer-Verlag, 1977,
563 pages.

Brinch Hansen, P., The Architecture of Concurrent Frograms, Prentice-Hall, 1977.

Coleman, D., A Structured Programming Approach to Data, MacMillan Press, 1978,
222 pages.

Conway, R. W., Gries, D. and Zimmerman, E. C., 4 Primer on Paseal, Winthrop
Publishers Inc., 1976, 433 pages.

Findlay, B. and Watt, D., PASCAL: An Introduction to Methodical Programming,
Computer Science Press (UK Edition by Pitman International) 1978.

Grogono, P., Programming in Pascal, Addison-Wesley, 1978, 359 pages. Note:
Those persons using the firat printing of this text may obtain a list of
corrections from: Barry Cornelius, Dept. of Computer Studies, University
of Hull, Hull, HUE 7RX, England.

Hartmann, A. C., A Concurvent DPascal Compiler for Minieomputers, Sprinter-Verlag
Lecture Notes in Computer Science, No. 50, 1977.

Jensen, K. and Wirth, N., Pascal User Manual and Report, Springer-Verlag Lecture
Notes in Computer Science, No. 18, 2nd Edition, 1976, 167 pages.

Kieburtz, R. B., Structured Programming and Problem-Solving with Pageal, Prentice-
Hall Inc., 1978, 365 pages,

Rohl, J. 8. and Barrett, H. J., Programming via Pascal, Cambridge University Press,
in press.

Schneider, G. M., Weingart, S. W., and Perlman, D. M., An Introduction to Program-
ming and Froblem Solving with Pagcal, Wiley and Sons, 1978, 394 pages.

Webster, C. A. G., Introduction to Pascal, Heyden, 1976, 129 pages.
Welsh, J. and Elder, J., Introduction to Pascal, Prentice-Hall Inc., in press.

Wilson, I. R. and Addyman, A. M., A Practical Introduction to Fascal, Springer~
Verlag, 1978, 148 pages.

wirth, N., Systematic Programming: An Introduction, Prentice-Hall, 1973, 169
pages.

Wirth, N., Algovithms + Data Structurea = Programs, Prentice-Hall, 1976, 366
pages.

LT# SHIN TVISYd

0867 “HIYYH

o
x>
[+x]
[aal
o




Alagic, S»; Aroib, he As “Tne pesiyn ot well=-Structuredg and
Correct Proygrams," springer-Veriag, New York, 197>,

The ma)or goal of this book s to present the tech-
nigues of top-uown program design ang veritfication ot
Lrogram correctness hand-in-hand. 1t thus aims to give
resders 4 nes way of Looking at algorithms and their
uesiyny synthesizing ten y€aors oOf research in the
processs It proviges many exanples ot program and
proof Jdeveloument with the aid ot a tormal and informal
treatment ot Hoare s muthod ot invariantsess.

inhe seconoary ;0al 0t this pook is to teach the reaver
how to use the programming lLanguage Pascaleees

From the Preface

This reviewer is 4 Fascal proauction programmer and this review
is presented in Light ot that vackyround. while many production
progrummer sy not tamiliar with the Pascal language, may fing this
Look to be somewhat aifticult at first redoing, it is well worth
the trouole for the insights that it proviges. The production
progremmer, consioering the purchase of this book, shoulc have 2
well read copy ot Jensen anu wirth L1J nanay. This book“s advan-
tage 1s tnat it can raise the programming apilities of its care-
ful reavers. Tne chapters ana the topics chosen for dinctusion
are:

Chapter Tupic
1 Introuucing Top-Down Design
é Basic Compositions ot Actions ano Their Proct Rules
) Patas Types
& pevelouping Programs with Proots ot (orrectness
5 Proceuures ano functions
6 Recursicn
I4 PFroyramming with ang without votos

(hapter 2 contains an excelient Introouction to logical formulas;
(hapter 3 contains &n excellent primer on set theory (expandead
later in (hapter 4). A pibliography, glossary ana subject index
are includeg as are two appenvices: the syntax ot Pascal ana a
complete renumeration ot Pascal statement Proot Rules.,
Typography is clean and uncluttered with extremely few typograph-
ical errors.

] have only two Ccomplaints re arding this book. The tirst, an
annoyance, is the excessive use of reference numoers appendea to
examples. The authors also begin reference renumbering at the
section Level rather than at the chapter Level. This causes
unnecessary ditficulties to the reaver whu, ignoring the section
numcer, provided at the top of the odu-numbered pages, thumbs
tack to tind & reterenced example (in one cases the reference is

to an example in a preceging section, theretore requiring a Lit-
tle detective worn 10 dgetermine exactly wnich example should vbe
reviewed!) 1 have toung myselt completely opatfttied by an
“obviously erroneous” backwarog reference, only to reatize, atter
some consternation, that I nag passea back into an earlier
section!

The secona, and pernaps more signyticant, complaint deals with
the tormatting ot anag symbols used in Pascal program examples.
The indentution scheme is i1nconsistent. Thus, on page 59, we
tino:

while on the very next page (70), we find
toe 4 =

: 19 numstud gg
vegio or

1
:= grage [i4)3 ;

it gr ?&U tnen totgrace :¥ totgrage ¢+ Qar
i -1

§§€ nNumgrades = numyrades
g£ng

In the tirst example, it 3s clear that the compound statement is
within the scupey and theretore control, of the wnilg, in the se
bnu it is not at all apparent that the compound statement is
under the contrul ot the fgre Althouyh tnis inconsistency may be
a Symptom ot o “gremlin typesetter”, it snould be corrected in

fu(ufe euitions. A tess 3Jisconcerting problem with tne type-
setting ot Pascel proyrams 1s the use of the non-Pascal symbols
y Vo 7Y anc TP, Since they are not a part of the

lanyuegey Lhey Should be replaceo Ly gnds Qfs nEY ana “<7,
respectively, in alt program tragments (they are acceptable with-
in the proc! comments, since they have a Loyical meaning).

lThis text has been used in at least one gravuate level course and
so contains material ot interest to the more eruJite Pascal
progrommer., Even though tnhe ygoing muy be rough at times, I
stonaly recommend tnis bouk to anyone serioustly interested in
programming lanyuages, anuy esvecially to Fascal programmers,

Gs G. Gustatson, San Dieac (A

Reterence

Q] Jensen, Ke ano wirth, N. "PASCAL = user Manual ano Report,”
feconu tdition (Corrected Printing), Suringer-verlag, New York,
1978,

LT# SM3N TVISVd

0861 “HIUYW

L 39




ARTICLES ABOUT PASCAL

Addyman, A. M., et al., "A Draft Description of Pascal,” Software - Practice
and Experience, Vol. 9, 381-424, (1979).

Atkinson, L. V.,"Pascal Scalars as State Indicators," Software - Practice and
Exgerience, vol., 9, 427-431, (1979)

Ball, M. S., "Pascal 1100: "An Implementation of the Pascal Language for, Univac
1100 Series Computers,” NTIS: AD-A059 861/5WC, (1 Jul 78).

Barron, D., "On Programming Style, and Pascal,” Computer Bulletin, 2,2, (Sep 79).
Bate, R. R. and D. S. Johnson, "Putting Pascal to Work," Electronics, (7 Jun 79).

Bishop, J. M., "On Publication Pascal," Software - Practice and Experience, Vol. 9,
711-717, (1979).

Bishop, J. M., "Implementing Strings in Pascal,” Software - Practice and Experience,
Vol. 9, 779-788, (1979).

Bonyun, D. A. and Holt, R. C., "Euclid Compiler for PDP~11," NTIS: AD-A061 402/
4wWC, (Apr 78).

Bonyun, D. A. and Holt, R. C., "Fuclid Compiler for PDP-11," NTIS: AD-AO61 406/
5WC, (Oct 78).

Brinch Hansen, P. and Hayden, C., "Microcomputer Comparison," Software - Practice and

Experience, Vol. 9, 211-217, (1979).

Clark, R. G., "Interactive Input i- Pascal," ACM SIGPLAN Notices, (Feb 79).

Crider, J. E., "Structured Formatting of Pascal Programs," ACM SIGPLAN Notices,
(Nov 78).

bavis, H., "The Pascal Notebook," Interface Age, Chapter 1, (Jun 79).

Fletcher, D., Glass, R. L., Shillington, K., and Conrad, M., "pascal Power,"
Datamation, (Jul 79),.

Forsyth, C. H. and Howard, R. J., "Compilation and Pascal on the New Microproces-
sors," Byte, (Aug 78).

Gracida, J. C. and Stilwell, R. R., "NPS-Pascal. A Partial Implementation of
Pascal Language for a Microprocessor-based Computer System," NTIS: AD-AOQ61
040/2wC, (Jun 78).

Graef, N., Kretschmar, H., Loehr, K,, Morawetz, B., "How to Design and Implement
Small Time-sharing Systems Using Concurrent Pascal,"” Software ~ Practice and
Experience, Vol. 9, 17-24, (1979).

Graham, S. L., Berkeley, U. C., Haley, C. B., and Joy W. N., "Practical LR Error
Recovery,"” ACM SIGPLAN Notices, {(Aug 79).

Grogono, P., "On Layout, Identifiers and Semicolons in Pascal Programs," ACM
SIGPLAN Notices, (Apr 79).

Gustafson, G. G., "Some Practical Experiences Formatting Pascal Programs,"
ACM SIGPLAN Notices, (Sep 79).

Hansen, G. J., Shoults, G. A., and Cointment, J. D., "Construction of a Trans-
portable, Multi-pass Compiler for Extended Pascal," ACM SIGPLAN Notices,
(Aug 79).

Heimbigner, D., "Writing Device Drivers in Concurrent Pascal,” ACM SIGOPS, (Nov 78).

Holdsworth, D., "Pascal on Modestly-configured Microprocessor Systems," IUCC
Bulletin, 1,1, (1979).

Holt, R. C., and Wortman, D. B., "A Model for Implementing Euclid Modules and
Type Templates," ACM _SIGPLAN Notices, (Aug 79).

Joslin, D. A., "A Case for Acquiring Pascal," Software - Practice and Experience,
Vol. 9, 691-692, (1979).

LeB] ac, R. J., "Extensions to Pascal for Separate Compilation," ACM SIGPLAN
Notices, (Sep 78}).

LeBlanc, R. J., and Fischer, C., "On Implementing Separate Compilation in Block~
Structured Languages," ACM SIGPLAN Notices, (Aug 79).

Luckham, D. C., and Suzuki, N., "Verification of Array, Record, and Pointer
Operations in Pascal,” ACM Transactions on Programming Languages and Systems,
vol. 1, 2, (Oct 79).

Marlin, C. D., "A Heap-based Implementation of the Programming Language Pascal,"
Software - Practice and Experience, Vol. 9, 101-119, (1979).

Narayana, K. T., Prasad, V. R., and Joseph, M., "Some Aspects of Concurrent
Programming in CCNPASCAL," Software - Practice and Experience, Vol. 9, 749-
770, (1979).

Natarajan, N., and Kisinha, M., "Language Issues in the Implementation of a Kernel,"

Software - Practice and Experience, Vol. 9, 771-778, (1979}.

Nelson, P. A., "A Comparison of Pascal Intermediate Languages,” ACM SIGPLAN Notices,
(Aug 79). .

Nievergelt, J., et al., "XS-0: A Self-explanatory School Computer,” Dr. Dobb's
Journal of Computer Calisthenics and Orthodontia, No. 36, (Jun/Jul 79).

parsons, R. G., "UCSD Pascal to CP/M File Transfer Program,"” Dr. Dobb's Journal of
Computer Calisthenics and Orthodontia, Box E. Menlo Park, CA 94025, No. 37,
(Aug 79).

Perkins, D. R., and Sites, R. L., "Machine-independent Pascal Code Optimization,"”
ACM SIGPLAN RNotices, (Aug 79).

Powell, M. S., "Experience of Transporting and Using the SOLO Operating System,"
Software - Practice and Experilence, Vol. 9, 561-569, (1979).

[T# SM3N T¥ISVd

086T "HIYYW

3 39Yd

St



Pugh, J. and Simpson, D.,"Pascal Errors - Empirical Evidence," Computer Bulletin,
(Mar 79).

Ravenel, B. W., "Toward a Pascal Standard," IEEE Computer, (Apr 79).

Rudmik, A. and Lee, E. S., "Compiler Design for Efficient Code Generation and
Program Optimization," ACM SIGPLAN Notices, (Aug 79).

Sale, A., "SCOPE and PASCAL," ACM SIGPLAN Notices, (Sep 79).

Sale, A. H. J., "Strings and the Sequence Abstraction in Pascal," Software -
Practice and Experience, Vol. 9, 671-683, (1979).

Schauer, H., "MICROPASCAL - A Portable Language Processor for Microprogramming
Education," Euromicro Jouynal, S5, 89-92, (1979).

Schneider, G. M., "Pascal: An Overview," IEEE Computer, (Apr 79).

shimasaki, M., et al., "A Pascal Program Analysis System and Profile of Pascal
Compilexs," Proceedings of the Twelfth Hawaii International Conference on
System Sciences, (ED.)} Fairley, R. E., (1979).

silberschatz, A., "On the Safety of the IO Primitive in Concurrent Pascal,"
Computer Journal, Vol. 22, No. 2, (May 79).

Sites, R. L. and Perkins, D. R., "Universal P-Code Definition,"
NTIS: PB-292 082/5WC, (Jan 79).

Sites, R. L., "Machine-independent Register Allocation," ACM SIGPLAN Notices,
(Aug 79).

Smith, G. and Anderson, R., "LSI-1ll1 Writable Control Store Enhancements to
U. C. S. D. Pascal," NTIS: UCIO-18046, (Oct 78).

Tanenbaum, A. S., "A Comparison of Pascal and ALGOL 68," Computer Journal, Vol. 21,
No. 4, (Nov 78).

Tanenbaum, A. 5., "Implications of Structured Programming for Machine Architecture,"
Communications of the ACM, (Mar 78).

Wallace, B., "More on Interactive Input in Pascal," ACM SIGPLAN Notices, (Sep 79).

Watt, D. A., "An Extended Attribute Grammar for Pascal," ACM SIGPLAN Notices.
Wickman, K., “Pascal is a Natural," IEEE Spectrum, (Mar 79).
wWiggers, R. and Van De Riet, R. P., "Practice and Experience with BASIS: An

Interactive Programming System for Introductory Courses in Informatics,”
Software - Practice and Experience, Vol 9., 463-476, (1979).

Wirth, N., "MODULA-2," ETH Zurich, Institut fiir Informatik, No. 27, (Dac 78).

Wirth, N., "Reflections About Computer Science," Univ. of York (England) Dept.
of Computer Science, Report No. 19, (Jul 78).

Wirth, N., "A Collection of Pascal Programs," ETH Zurich, Institut fiir Informatik,
No. 33, (Jul 79).

AGRAGR AR AR A A A A g

UCSD Workshop Proceedings

The Proceedings of the July 1978 UCSD Workshop on Pascal Extensions
(see Pascal News #13, pages 12..15) are now avallable for $25 from:

Institute for Information Systems
Mail Code C-021
University of California, San Diego
La Jolla, CA 93093
Usa

Payment must acconpany all orders.

i Several persons involved with the Workshop expressed to me
their unhappiness with the Pruceedings. Because of this,
I asked Ruth liiggins, who served on the Editorial Board, to
provide some background information. Ruth graciously agreed
to do so, and the followlng note is the result.
-Jim Miner

X XXX XXX X KX EE R & & R

Comments on the Proceedings of the UCSD Workshop on System Programming Extensions
to the Pascal Tanguage.

The Proceedings of the UCSD Workshop on System Programming Extensions to the
Pascal Language are now available. 1 would like to provide some information
for the benefit of those who did not attend the workshop but will obtain a
copy of the proceedings.

Near the end of the second week of the Workshop, it became clear that we would
not be able to approve the wording of a final document within the time frame
of the Workshop. And yet, since the proceedings would be purported to
represent consensus of about 50 industry representatives, it was important
that they be dccurate. To that end, the Workshop participants appointed an
Editorial Board whose function was to compile a draft of the proceedings for
UCSD to distribute to Workshop attendees for comment with respect to accuracy
review those comments, attempt to edit the draft to reflect the comments and
prepare a final version. Preparation and distribution of copies was provided
by the Information Sciences Institute, UCSD.

/T# SHIN TYISVd

086T “HI¥YW

6 39vd




The Editorial Board met in August, 1978, to prepare the draft. It was
distributed to Workshop members with the phrase "Not for distribution” on each
page. The comment period was to last until the end of October. The next
date when most of the Editorial Board could meet was January 11, 1979. At
that time, we went through each section of the proceedings and tried to
incorporate comments as fairly as possible. We then wrote instructions to
Gillian Ackland, the UCSD person who was doing the actual editing and
distribution of the document. We also wrote a cover letter to accompany the
proceedings. Copies of both of these are enclosed.

In late April or early May, I received a phone call from Gillian. She said she
had had a very busy winter quarter and had not been able to do anything at all

on the proceedings. However, in the Spring, she had gone on with the

work but had a few questions. Instructions 1 through 5 (see enclosed) were 0K,
but why didn't the Editorial Board members want their names included except

in the Workshop attendees list? 1 told her that we had discussed this at length
and agreed that we did not want our names to lend credibility or be

misconstrued as endorsement of the poor technical quality of the document.

She had another question regarding Section G (Proposed Experiments) on the
subsection on Type Secure External Compilation. This section had sparked
several, carefully written, long letters disputing the accuracy of what

claimed to be a representation of the part on which there had been agreement.
The Board could find no way to treat these fairly except to instruct Gillian

to include the letters also in that section. For some reason, Ken Bowles and
Terry Miller did not want to do that. Instead, they left the section as it was
in the first draft and added, as an editorial comment, the sentence "The
accuracy of this representation has been disputed." She asked me if that was
all right. I said that the Board had considered that approach but felt it
would be educationally important to include all of the disagreement to show

how pervasive the dispute was. Anything less would be misleading and, therefore,
unfair to the workshop participants. Gillian suggested that they rewrite the
section, incorporating the comments as best they could. I told her that the
rewritten section would have to be approved by, at lesst, those who had
disputed the first version. It seemed to me that the simplest, fairest, and
most professionally honest way to handle it was to make the whole technical
controversy available to the readers. In addition, it would help to demonstrate
how complicated the issue of external compilation really is.

When one receives a copy of the proceedings one can see that the cover letter

is not included; the words "not for distribution" do not appear &s per

the Board's instructions; and the subsection on Type Secure External Compilation
does not include any of the related technical controversy. Finally, a final

copy was not sent to the Editorial Board Chairman as requested in 8 (see enclosed).

1 was told that the matter was handled in such a way in the interest of time,
that the whole thing had dragged on far too long and any further delay was
not justified compared to the desirability of getting it distributed. It is
not clear to me how the Board's instructions could have added noticeable
delay.

M H e

Ruth M. Higgins

Enf_.(z)

el
X
w
o
T
=
=
rm
=
v
Tt
Nl
=~
Jan, ‘79
Dear Gillian:
Many thanks for getting your new version of Sections B thru F
to us. There was some concern about how certain comments had been
handled. Having the updated version allowed us to check.
We have decided that, on the basis of responses from reviewers,

the groceedings do not merit publication. However, the Workshop

participants deserve an accurate report. Therefore, enclosed are the

required corrections.

) Regarding overall format,

1. Replace Section A with the enclosed;

2. Edit Sections B through G as shown. Although you did not =
send us your copy of G, the Board edited a copy from =
the first draft to our complete satisfaction; =

3. Delete Section H, Section I, and Appendix X; s

o]

4. Insert page numbers in the Table of Contents; <

5. The list of participants should be in alphabetical order
by name of individual accompanied by affiliation, omitting
addresses and phone numbers.

6. The members of the Editorial Board do not wish to have their
names appear anywhere except among those of Workshop
participants.

7. Since the Board feels that these proceedings do not merit
wide distribution (even though persons requesting individual
copies should receive them at cost), the phrase NOT FOR
DISTRIBUTION will remain on each page.

8. Before printing, mail a final copy te Bruce Ravenel. He will
ascertain that editing instructions were understood correctly.

Thank you again for your tremendous efforts. We appreciate the

work you have done so far. Good Luck in this semester! o
4

The Editorial Board =

—

()

- R R



To: The Workshop Participants
From: The Editorial Board
Subject: The Enclosed Proceedings

Date: January 11, 1979

This is the final version of the Proceedings to the UCSD Workshop
on System Programming Extensions to the Pascal ianguage.

In light of review responses received, the Editorial Board
has decided that the quality of the contents of this document merits
distribution to the Workshop participants only. It does not warrant
publication. However, as prescribed in the general resolutions (Sec-
tion B), copies will be sent to a few others and will be available
at reproduction and mailing costs to any who request individual copies.
Recipients of this document are requested to restrain from distributing
it further.

The production of these Proceedings reflect the combined
efforts of many people. In particular, Gillian Ackland has performed
an outstanding, Herculean effort of document preparation and distribution
undevr the guidance of Terry Miiler and Ken Bowles. We wish to thank
them on behalf of the Workshop participants.

A Repart on Pascal Activities at the
San Diego 1979 Fall DECUS U.S. Symposium

B111 Hetdebrecht

TRW DSSG

One Space Park

Redondo Beach, CA 90278

The 1979 Fall Digital Equipment Computer Users Socfety (DECUS) U.S. Symposium was
held in San Diego, California on December 10-13. Approximately 600 of the 2500 people
who preregistered indicated an interest in Pascal. The DECUS Pascal SIG, chaired by
Dr. John R. Barr of the University of Montana, has now grown to over 2000 members.

In the Pascal Implementation Workshop, John Barr, Brfan Nelson and I spoke briefly
about the fmplementation of NBS Pascal under RSX, RT-11, RSTS and VAX/VMS systems,
Gerry Pelletier of Transport anada spoke about his work in implementing a self compiling
version of Torstendahl's "Swed{ish" Pascal (V5.3) under RSX-11M.

In the Pascal Standards Report, Leslie Klefn (DEC) and Barry Smith (Oregon Software)
reported on the current status of the IS0 draft standard and progress within the X3J9-
IEEE Joint Pascal Committee. Barry gave a detailed discussion on conformant array para-
meters and answered a number of good questions from the audience. The quality of questions
asked showed the increasing level of sophistication of Pascal users in the DEC world.

John Barr gave a presentatfon of his work on fmplementing NBS Pascal on L.. .1's
running RT-11. The compiler is completely selfsupporting now on such systems, and can
compile ftself on a 28K word machine using the RT-11 SJ monitor. It takes approximately

10 minutes to compile the compiler on an LSI-11 using floppy disks (about 700 1ines/minute}.

The compiler §s not yet a full impiementation of Standard Pascal, but we (the Pascal S1G)
are working on 1it.

Willtam Donner and James Forster of TMI Systems gave interesting presentations on
the implementation of a financial message switch for EFT using a Pascal Multi-Process
Subsystem {PMPS-11), which they atso impiemented. They added concurrency facilities
(processes, monitors and semaphores) to OMSI Pascal strictly by adding to the runtime,
without extending the language. Fed up with MACRO, FORTRAN and RATFOR, they considered
using €, PL/I and Pascal as their implementation language. They chose Pascal for its
retiabiltty, effictency and good structure. 99% of their system is written in Pascal.

Isaac Nassi of Digftal Equipment gave two overview presentations on Ada, which
were very well attended. The audience seemed somewhat overwhelmed by the complexity of
the language.

During the Pascal SIG Business Meeting a variety of topfcs was discussed. For
example, Lesiie Klein gave an update on DEC's VAX Pascal compiler. The compiler has under-
gone field testing since June 79 at 15 sites, and should be ready for shipment to customers
very soon (approx. December 79). Although it is not a highly optimizing compiler, the
test sftes were largely enthusiastic about {t. One of the test site users reported
moving a large program from CDC Pascal to the VAX with only 3 changes to the program
required. DEC should start recefving some user feedback on the compiler by the next DECUS
Sympostum.

Reid Brown of Digital spoke about the positive influence the Pascal SIG has had
on Digital with respect to Pascal.

Roy Touzeau { Pascal SIG Newsletter Editor) and John Barr also spoke on a number
of subjects concerning the SIG. Due to DECUS's new funding structure, each S1G may
soon have to charge a small annual subscription fee for its newsletter.

I spoke briefly about the status of the DECUS pascal SIG library. The Fall 79
Pascal SIG library contains two versfons of Seved Torstendahl's "Swedish" Pascal:
version 6, which contains some new symbolic debugging facilities, and the version
modified by Gerry Pelletier to enable it to compile {tself on a POP11. There are also
versions of NBS Pascal for RSX, RSTS and RT-11 systems, as well as a number of other
utilitfes. PN readers who are interested in the Pascal SIG library should consult
recent editions of the DECUS Pascal SI1G Newsletter for more details.

The next DECUS U.S. Sympostum will be held in Chicago on April 22-25, 1980, and
will again feature a number of fnteresting Pascal sessions.

7 VN VIR YR VRRY YT VY VREY SRR VY S T SRR R R 9T S

LT# SMIN TYISYd

0861 “HO¥YW

39Yd

1



.o 1s0/TC 97/5C 5 N 553

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

1O ORGANISATION INTERNATIONALE DE NORMALISATION

From: UNIPREA
VIA MONTEVECCHIO. 29
10128 - TORINO

1s0/TC 97/8C 5

reiephone, 881712 PROGRAMMING LANGUAGES

Tdegrems: UNISO - TORINO .

Becretariat ANST (U .S.A.)

REPORT ON ADA

Ada is a programming language being produced by the
U.S, Department of Defense in cooperation with several foreign
and international organizations, The project has spanned five
years and is unique for its openness in all phases and the
resultant international contributions,

The first phase was an evolution of requirements from
the users by an itterative process which produced five versions,
increasingly refined, These documents were widly circulated
and major input was received from individuals outside the U.S.,

from the International Purdue Workshop such especially its LTPL-E

committee, and from experts of SC 5/WG 1. Major support has been
contributed by the CEC and by the goverments of the U,K, and

Germany, We believe that this requirements phase was very valuable

in settling many of the questions that normally arise much later
in the development process, when they are much more difficult to
deal with, It might be said that, in the best procedure for

ma jor projects, we are proceeding thorough definitive requirements,

followed by firm design, before coding,

After evaluation of several dozen existing languages
against these requirements, a new design was initiated, On the
basis of an international request for proposal, four contractors

were choggg_’ﬁo producg cgmpetiygh'ﬁprototypes.[All started from

Pascal, although there is no intent that the resulting language

different,|The initial designs from these four contractors were

reviewed by several hundred experts worldwide and a decision was

made to continue refinement of two of the designs, A year later,

these two designs were reviewed, again with international partici-

pation, The single design selected was that produced by Cii
Honeywell-Bull, That design, and a document giving rationale for

design decisions, are contained in N-499 and have been distributed

as the June 1979 issue of SIGPLAN Notices. A preface from the
Secretary of Defense requests international public comment.

be closely related to Pascal, since their requirements were much |

R o R e N TR TR TR R

2)
For any that do no have this document, a microfiche is available
this meeting.

Ada is a modern powerful computer programming language,
It has real-time features and has been under consideration by WG 1
for that reason, It is however targeted to a much wider audience,

Ada promotes modularity for the production of 1arge
systems, strong data typing for reliable, even provable, programming,
etc, A rigorous definition will allow control of the language
to make possible wide portability, It is our intent that there
be no subset or superset compilers and that a validation facility
be used to assure compliance,

Our economic analyses Bhow that even more benefit may
be attributed to the commonality resulting from exactly compatible
systems than that would be attributed to the technical improvements
postulated from introduction of Ada,

Even greater benefits may accrue from the wide availabi-
lity if toolsa development environment, debugging systems, appli-
cations specific packages, etc, We term this the "environment"
of Ada, It is expected that the availability of this environment
to those who have compliant compilers will be an incentive for
such compliance,

A fundamental question is why does the DoD want to get
involved with national and international standardization, Ada
is being volved in a single place and does not have the normal
standards problem of rationalization of divergent defdénitions and
implementations, Is not the DoD's control sufficient?

It may well be that the DoD has sufficient control in-
ternally and with its contractors, This control may be sufficient
to carry over to much of U,S, industry,., We are not confident that
this will be sufficient to cover small business, academic, and
foreign industry, We do, however, feel very strongly about the
benefits of commonality, specifically those benefits to the DoD
of universal commonality, the ability to pick up programs generated
elsewhere, transfer of technology, availability of compilers
generated elsewhere, and most significantly the increacend
availability of other sources on which we can draw for hardware
and software contractors, increacing competition,

For the advantages this will provide, the DoD is
prepared to relinguish some control to the proper authorities,
the matter is certainly up for negothtion, Ada Control Board will
be established to maintain and interpret the standard, It seems
reasonable to have representatives on this group from any nation
having a significant committment to the language. Consider that
group as the sponsoring body, presently the U,S. DoD with repre-
sentatives of U,K., France and Germany,

LT# SMIN TVISYd

0861 "HI¥VW

ZT 39



It has certainly been true that the design of ADA, and
the entire project leading up to it, has been an inter—
national effort, as I believe has been evidenced here

today. It would be a shame if this opportunity to assu-

re, from the beginnin a wo i i s
was mlssé&. ¢ &y rldwide single definition

In light of the resolution 6 intent, we consider that
we are now in a phase of simultaneous comment from lo-
cal, national, and international bodies., This was the
purpose of the WG 1 Resolution and the SC 5 circula-
tion of the documents (N 499, N 504, N 505),

Several hundred comments have already been received

and processed. The results of these comments and fur-
ther studies will result in a final design document in
May 1980 (with perhaps an early draft in January 1980).
At that time we will have a Military Standard, and, one
expects, a US Government Standard. I belive that at that
time, with your cooperation, we will have done the pPro-—
cessing appropriate in order for SC 5 to recommend Ada
for international standardization.,

The University of Nebraska-Lincoln The University of Nebraska at Omaha

A STUDY OF SYNTAX ERRORS ENCOUNTERED
BY BEGINNING PASCAL PROGRAMMERS

Kirk Baird
David W. Embley
Department of Computer Science
University of Nebraska - Liacoln
Lincoln, NE 68588

1. Introduction

In the 1978-1979 school year, the Computer Sciernce Department at the University of
Nebraska - Lincoln replaced FORTRAN with PASCAL as the introductory language for Compu-
ter Science majors. Since PASCAL was known to only a handful of upperclassmen and pro-
fessors, 1t was anticipated that beginoning students would encounter difficulty finding
assistance with errors in thelr programs. The traditional sources of assistance, other
than the teaching assistant or professor (e.g. the debug consultant, fraternity files,
or the dorm-floor Comp. Sci. genlus) would not be as 'ielpful as before. In this situ-
ation, increased dependence on the compiler generated error messages was inevitable;
and even though PASCAL is designed for instructional use, its error diagnostics are
unfortunately not composed so that the beginning student can readily understand them.

Anticipating this difficulty, we decided to observe all first semester student programs
submitted for execution and note error message frequency, error persistence, and appar-

LT# SMIN YISYd

ent student reaction and catalogue actual causes for each error. The results of these =
observations were to serve as a basis for improving PASCAL error messages or at least g;
to provide material for a reference document for beginning PASCAL programmers. g;
2. Data Collection —
w
Department of Computer Science The students observed were Computer Science majors taking CS 155, Introduction to Com- gg
Ferguson Hali puter Programming, using PASCAL. These students ran their PASCAL programs ou an
The University ot Nebraska-Lincoin {_’i:‘zzr:g":‘.(geﬂk‘:zs'gggg IBM 370/148 (later upgraded to a 158) using the September 1977 version of a PASCAL
* compiler developed at Stanford University.
A special JCL package was developed for use in data-collection. Each time a student
Pascal User's Group, c/o Andy Mickel ran a program, the output, including in-line error messages, was routed to disk. If
University Computer Center: 227 EX the program compiled without syntax errors, it was allowed to execute, and the output
208 SE Unlon Street was also sent to disk. A copy of all of the temporary disk output including program
University of Minnesota listing and program output was placed in a permanent file and finally routed to the
Minneapolis, MN 55455 printer and given to the student as if it were undisturbed. The permanent file was
occasionally reblocked and copied to tape.
Dear Andy,
The data collected in this manner eventually came to almost six million bytes of stor-
Enclosed is an article for the Pascal News that should be of interest age. Elementary pattern matching techniques were used to locate and tabulate the
to your readers. It describes some observations on error message fre- occurrences of syntax errors in this data. The results of this tabulation appear in
quency, persistence, and apparent student reaction in an introductory Appendix 1.
Pascal clasa for Computer Science majors and advocates the development
of better error diagnostics particularly for novice programmers. On occasion, iistings of random portions of the data were printed, and the syntax
errors, theilr cause, and their persistence were analyzed by hand and cataloged. Later
Sincerely, in the semester, printouts of unsuccessful runs were collected by the professor and =
« turned over for analysis and cataloging. The results of this tabulation are reported )
Oﬂ,d W, in Appendix II.
David W. Embley ::

Assistant Professor

The University of Nebragka Medica! Center




3. Observations

Three general observations can be made from the data: 1) beginning students interpret
error messages too literally, 2) differences between standard PASCAL as described in
the text (Kieburtz, 78) and the version implemented confuse students, and 3) certain
error measages seem to be particularly ambiguous or misleading.

3.1 Literal Interpretation

Given little else, the beginning student is likely to depend unwittingly on the com-
piler generated error messages, at first taking them too literally. In the Stanford
compiler as implemented at UNL, an error arrow points to a particular column of a

line of code and 1s followed immediately by a list of error message numbers. The
premise 1s made that the arrow points to the exact position of the error described by
the error messages associated with the error numbers. In fact, the error arrov never
points to the exact position of the error. Most often, it is positioned just past the
error, usuvally pointing at the following keyword or identifier.

More than once a student forgot to put a semicolon at the end of the PROGRAM line and
found the error arrow pointing to the character following the succeeding keyword, VAR,
giving the message "SEMICOLON EXPECTED". The student would run the program a second
time with a semicolon after the keyword (i.e. VAR;), and the compiler would respond
with an error arrow pointing to the semicolon and the message ''SEMICOLON EXPECTED",
among others.

Other students inadvertently put a semicolon where a comma belongs in a WRITELN param-
eter list., The resulting error was ") EXPECTED" with the error arrow positioned near
the semicolon. Subsequent runs showed students putting right parentheses before, after,
and in place of the semicolon.

3.2 A Non-Standard Version

The second problem is the difference between the standard version of PASCAL and the one
implemented at UNL. Since some characters were not available, the compiler expected
standard substitutions such as left-parentheseg-vertical-bar for left-square-bracket
and the at-sign for up-arrow. These obvious distinctions caused relatively few prob-
lems.

Some other differences, however, were more detrimental. For example, in the September
1977 version of the Stanford compiler, the standard identifier MAXINT was not imple-
mented, nor was PAGE, and WRITELN and its counterparts had to be followed by paren-
theses in contrast to the syntax diagrams. Several students faithfully adhered to the
syntax diagrams and appropriately omitted the parentheses only to find their code blem-
ished with unwarranted syntax errors. The subsequent July 1978 version resolved the
problems with PAGE and WRITELN but disallowed SET OF CHAR. Hence students copying seg-
ments of programs from thelr text with such syntactically legal expressions as

CH IN (] 'A'..'Z" |) or N >= SQRT(MAXINT) would get syntax errors.

3.3 Ambiguity

The third problem is the ambiguity of the error message itself. There are a handful of
often occurring ambiguous error messages including "ILLEGAL SYMBOL" and '"ERROR IN VARI-
ABLE" and less often occurring messages such as "SEMICOLON EXPECTED" and "TYPE CONFLICT
OF OPERANDS". In fact, "ILLEGAL SYMBOL" and ERROR IN VARIABLE" accounted for almost
forty percent of all error messages ohserved.

One of the most often committed blunders exemplifies the novices reaction to these
ambiguous messages. Students would precede an ELSE with a semicolon; the resulting
error message, "ILLEGAL SYMBOL", pointed at the blank following the ELSE. Students
replaced this blank with almost anything, including another THEN, another semicolon, a
BEGIN, or a new line.

The reason ambiguous error messages hold such a majority of the total is twofold:

1) the very fact that the error message is unclear causes the student to repeat {it,
sometimes with changes, and at times with the innocent hope that it will go away, and
2) many error messages have more than one cause and are unclear because the message
has to be general enough to cover all cases.

4. What can be done?

Ideally, the compiler should be modified, with the beginning student in mind, to give
more appropriate error messages. This modification should involve more than mere cos-
metic changes to the error messages. Most likely, additional messages are needed, and
a finer distinction among possible causes should be incorporated particularly for
ambiguous and high frequency error messages.

Not having developed the compiler ourselves, we were not in a position to make these
intricate alterations. We were, however, in a position to alter the error message
table so that an error message would include a listing of the most prevalent potential
sourcesg of the error. Although this option was at our disposal, we rejected it for a
number of reasons. No beginning student could remain calm at seeing a hard-worked-on,
twenty-line PASCAL program intermingled with two hundred lines of error messages.
Moreover, there are certain to be sources of errors that have not been cataloged; a
given student assignment might generate a particular error message a thousand times
even though it never appeared during the semester observed. In additiom, because
Stanford is regularly updating its compiler, such alterations would soon be made obso-
lete. For example, when a literal character string spanned two source lines on the
September 1977 version, the error message generated was '"IMPLEMENTATION RESTRICTION".
In subsequent versions, the error is '"STRING CONSTANT CANNOT EXCEED SOURCE LINE".

In view of these difficulties, it was thought best to provide a supplementary handout
that could be updated from time to time. This handout (Baird, 79) provides a list of
the most frequently encountered errors and their typical causes. Another advantage
of a handout over a cosmetic alteration of the syntax error table is that additional
documentation and helpful suggestions can also be Iincluded. In addition to syntax
errors, this handout documents differences between the UNL Stanford compiler and
atandard PASCAL, describes runtime errors and what to do about them, lists compiler
options, and shows and explains a sawple program listing.

We encourage PASCAL implementors to make the effort to provide better error messages
particularly for novice programmers. We would be interested to hear of such projects
in progress and would eventually like to obtain a compiler with error messages that
are more palatable to the beginner.

References

1. Kieburtz, R. B., Structured Programming and Problem Solving with PASCAL.
Prentice Hall, 1978,

2. Baird, K., "Stanford PASCAL at UNL", Department of Computer Science,
University of Nebraska - Lincoln, 1979.

LT# SMIN TYISYd

=
x>
bl
(e
p= =4
~

—
w
o0
[




Appendix II g
wm
APPENDIX I The following error messages were found in the programs of beginning PASCAL students 2
s —
These errors were tabulated from students running PASCAL as an introductory programming ::‘: :::ioﬁ:t:i::::da:: x:zt"?:ztz:u?:?gfh::;oro?zf .t.l:.e. :;;Ec;::;‘:r;::; fxz:siis:riit::f\:d’ -
language, using the Stanford PASCAL compiler. The actual error meesage is listed in semicolon 88 a cause) Q
order of decreasing occurrence. Errors of insignificant occurrence are omitted. * b7y
o
—
ERROR PERCENT ~
OCCURRENTE 2: IDENTIFIER EXPECTED
6 : ILLEGAL SYMBOL 27.0
104 : TIDENTIFIER IS NOT DECLARED 16.2 a) extra comaa in list
$9 : ERROR IN VARIABLE 1.4 b) used TYPE as a variable name
13 : “END" BXPECTED [ ¢) missing quote in character literal
S8 : ERROR IN PACTOR 04.3 d) previous error in declaration
#*#s4% END OF PILE ENCOUNTERED ou.1 e) used zero instead of O in identifier
398 : IMPLEMENTATION RESTRICTION 03.6
134 : ILLEGAML TYPE CP OPERAND(S) 02.7
S1 ; m:=%" EYXPECTED 02,5 4: ")" EXPECTED
4 3 wyn EYPECTED 02.4
101 ;: IDENTIFIER DECLARED TWICE 02.1 a) => used instead of >=
5 1 w:w EXPECTED 01.6
129 : TYPE CONPLICT OF OPERANDS 01.6
10 : ERROR IN TYPE 01.5 S: “:¢ EXPECTED
103 : IDENTIFIER IS NOT OF APPROPIATE CLASS(sic) 01.5
18 : ERROR IN DECLARATION PART 01.4 (note: in Stanford PASCAL, the colon is a viable
14 ; w;» BYPECTED 01.3 substitute for ..)
125 : BRROR IN TYPE OF STANDARD FUNCTION PARAMETER 01,0 -
2 : IDENTIPIER EXPECTED 00.8 a) tried to use PILE as a variable naae =
144 : ILLEGAL TYPE OF EXPRESSION 00.7 b) CASE without END ‘;’
21 ; wsn BYPECTED 00.6 ¢) TO used instead of .. N
§2 : “THEN" EXPECTED 00.6 —
116 : ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER 00.5 ‘6%
17 : WBEGIN" EXPECTED 00.u 6: ILLEGAL SYMBOL o
53 : “ONTILY" EXPECTED 00.4
S4 : upo"™ EXPECTED 00.4 a) previous statement aissing ¢ semicolon
124 : F-PORMAT IS FOR REAL TYPE ONLY oC.u b) semicolon precedes EISE
9 : vw(" EXPECTED 00,3 c) misspelled keyvord
140 : TYPE OF VARIABLE IS NOT A RECORD 00.3 d) => instead of >=
S0 : ERROR IN CONSTANT 00,2 e) missing quote in character literal
126 : NUMBER OF PARARMETERS DOBS NOT AGRE® WITH DECLARATION 00,2 £f) missing ( in comment
W5 : TYPE CONPLICT 00,2 g) = used instead of :=
8 : WOF" EXPECTED 00.1 h) extra END
16 : w=v EYPECTED 0o0. i) DO used instead of BEGIN
20 3 v, EXPECTED 00,1 §) TO used instead of ..
§5 : wTO" OR "DOWNTO™ EXPECTED 00.1 k) = used instead of : for RECCRD within RECORD
102 : LOW BOUND EXCEEDS HIGHBOUND 00.1 1} END missing on CASE statement
106 : NUMBER EXPECTED 00.1 4 m) comma pissing in list
107 : INCOMPATIBLE SUBRANGE TYPES 00,1 n) spaces within an identifier
139 : INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION 00.1 , ©0) comma or colon used instead of a seamicolon
142 : ILLEGAL PARAMETER SUBSTITUTION 00.1 '
143 : ILLEGAL TYPE OF LOOP CONTROL VARIABLE 00.1
150 : ASSIGNMENT TO STANDARD FUNCTION IS NOT ALLOWED 00,1 8: "OF" EXPECTED
167 : UNDECLARED LABEL 00.1 =
201 : ERROR IN REAL CONSTAKNT : DIGIT EXPECTED 00.1 a) tried to use PILE as a variable nase =
255 : TOO MANY ERRORS IN THIS SOURCE LINE 00.1 b} identifier declared twice

E1




et FOS "

10: EBROR IN TYPE

28) tried to use TYPE ag a variable
n
b} colon used instead of equal sign ane

13: "END" EXPECTED

a} forgot END for RECORD
b) used TYP® asx a variable nage within record

14: ";% EYPECTED

(oote: this error only occurs within th
h ,onl e declaration
semicolons missing within the block are flagg:d 5;:;

error 6: YLLEGAL SYMBOL)
a) illegal characters vithin PROGRANM identifier

b) forgot END for EECORD
€) tried to redefine TYPE vithin a RECOPD

16: =" EXPECTED

a) colon used to instead of e
qual sign
b) tried to use TYPE as a variable vgthin a RECCRD

18: BRROR IN DECLARATION PART

a) VARIABLES used instead of VAR

19: BRROR IN PIELD LIST

a) forgot END for RECORD

50: ERROR IN CONSTANT
8) ... used instead of .,

b) TO gsed instead of ..
C€) variable list used as an array index

51: ®:=" EXPECTED

a) = used instead of :=

b) misspelled name of procedure identifier
58: ERROR IN FACTOR

a) => used instead of >=

b) literal character used withou
t quotes
€) real fraction constant used vithout leading zero

‘

$9: ERROR IN VARIABLE

a) missing quote

b) missing semicolon

c) aissing comma in list

4) misspelled procedure identifier

@) := used instead of = in expression
f) misspelled AND

g) illegal charactrer in identifier

101: IDENTIFIER DECLARED TWICE

a) identifier used once as an element in a user defined

datatype and once as a simple variable

102: LOWBOUND EXCEEDS HIGHBOUND

a) TO used instead of ..

103: IDENTIFIFR IS NOT OF APPROPRIATE CL}SS

a) semicolon missing before WRITE
b) previous error in declaration

c) no END for CASE statement

d) pissing quote for literal string

104: IDENTIFIER IS NOT DECLARED
a) misspelled identifier
b) misspelled keyvord

c) missing quote in character literal
d) imbedded blanks within an indentifier

116: ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER

a) tried to read a user defined datatype qualified record

identifier broken between source lines

125: ERROR IN TYPE OF STANDARD FUNCTION PARAMETER

a) passed integer to TRUNC

129: TYPE CONPLICT OP OPERANDS

a) inteqer assigned a real result

b) misspelled identifier

¢) / used instead of DIV

d) literal character string not the same si
APRAY OF CHAR it is assiguned to

LT# SM3IN TYISYd

0861 “HIYYW

B i R P e e



1342

136:

138:

139:

140:

143:

1442

1452

147;

152:

156:

ILLEGAL TYPE OF OPERAND(S)

a) => used instead of >=
b) previous error im declaration

SET ELEMENT MUST BE SCALAR OR SUBRANGE

a) set vritten inside square brackets
€.g. X : SET CF BOOLEAN; .... “ x

TYPE OFP VARIABLE IS NOT AN ARRAY

a} = used instead of := when assigning an array

INDEX TYPE IS NOT COMPATIBLE ®ITH DECLARATION

a) previous error in declaration

TYPE OF VARIABLE IS NOT A RECORD

a) previous error in declaration

ILLEGAL TYPE OF LCCP CONTROL VARIABLE

a) previous error ip declaration

JLLEGAL TYPE OF EXPRESSION

a) := used instead of =

TYPE CONFLICT

a) previous error in declaration

LABPL TYPE INCOMPATIBLE WITH SELECTING EXPRESSION

a) no END for CASE statement

NO SUCH FIELD IN THIS RECORD

a) misspelled field

b) previous error in declaration
MOLTIPLY DEFINED CASE LMABEL

a) no END for CASE statement

b) missing quote within CASE statement
c) BLSE preceded by semicolon in CASE statement

255: TOO MAKY ERRORS IN THIS SOURCE LINE ¢
(note: the compiler only lists the first nine syntax
errors of a source line)
398: IMPLEMENTATION RESTRICTION
a) WRITELN (a record)

b) literal character string > 64 characters
c) SETs OFP CHAR are disallowed on the compiler

OO0 O0O0O O

Applications

AYLT - As You Like It

_ Production programming in Pascal requires a number of source code manipulation tools.
With them appropriate application specific syntactic sugar and common multi-program pro-
cedure and data structure definitions can be managed. Doug Comer's MAP is such a pro-
gram,

Tram's complex arithmetic routines and Judy Bishop's/Arthur Sale's string routines
are examples of typical Tibrary source utilities. Barry Smith also sent in a small
string package. Take your pick. After all, with Pascal you can have it AYLI.

CORRECTIONS

A Qlass of Easily ...
in example #3 change -
"= gt MY = g

- Pascal News #15

LT# SMIN T¥ISYd

0367 “HIYVW

J9vd

At




Applications

$=5 "ID2ID" (See PN 15, September 1979, page 31.)

Jim Miner spotted two typos in the published version of ID2ID. He also provided code to
improve error processing by handling unclosed strings correctly as well as an unexpected
EOF inside comments. - Andy Mickel

Correct typographical errors:

Replace line 172 by:
if P2".Bal = HigherRight then P1~.Bal := HigherLeft

Replace line 314 by: .
ImportantChars := LettersAndDigits + [°(°, “{", "*°");

Improve error processing:

Replace line 3 by:
* James F. Miner 79/06/01, 79/09/30.

Insert after line 275:

label
1 { TO ESCAPE EOF INSIDE OF A COMMENT };

Replace lines 338 and 339 by:
‘in source program.”)
elese begin Write(Target, Source™); Get(Source) end

Insert after line 345:
Write(Target, Source™); Get (Source);

Delete line 347.
Replace lines 350, 351, and 352 by:
if PEOLn(Source) then
begin WriteLn(Target); ReadLn(Source);
if EOF(Source) gthen goto 1 { EXIT SCAN }

end
else begin Write(Target, Source™); Get(Source) end

Replace lines 362, 363, and 364 by:
if EOLn(Source) then
begin WriteLn(Target); Readln(Source);
if EOF(Source) then goto ! { EXIT SCAN }
end

else begin Write(Target, Source™); Get(Source) end

Replace line 372 by:
end;
1: { COME FROM EOF INSIDE OF COMMENT )}

LA X A X A XX EX XX XXX XX

L. INTRODUCTION

The Referencer program is a software Lool intended to assist programmers in
finding their way around Paacal program listings of non-trivial size, In
kaeping with a basio philosophy that mofiware Lools should have distinot
and clear purposes (as indeed most craftamen desire), the function of
Referencer has been defined as providine a  compact  summary of

-neadings in 2 progeam, and a lable of calls made by sach
procedure., I thus provides information on the first-order procedural
interfaces.

The products of Referencer may serve also as an adjunct to a full cross-
reference, because 1in presenting less information Referencer produces a
more convenienl summary, Additionally, for those people who wish Lo change
the syntax of Pascal Lo require repetition of a procedure-headinz atl the
occurrence of the block of a forward-declared procedure, it will serve as a
reminder that language changes are nol the only answer to every problem.

2. USE OF REFERENCER

Verston $-02,01 of Referencer, the distribution version, has no options to
be set. It reads from the input file, expecting Lo find a complete Pascal
program on this textifile. Although the results with syntactically incorrect
programs are not guaranteed, Referencer is not sensitive to most flaws, It
cares about procedure, function, and proaram headines, and aboutl proper
matching of begins and cases with ends in Lhe statement-parts,

The two tables are produced on the file gutpul. Referencer does not try Lo
format the headings to fit them into a device-line width; it leaves them
preity much as they were entered into the program, except for indentation
alignment, The first table thus benefits from a wide print-line. The
second table has a constant in the program which cootrols its width, and
the distributed version requires 132 characters of print positions.

Thus, use of Referencer involves simply executing it, with Lhe altachment
of the input file to some program text, and the direction of the output
file to some suitable printing device.

3. LEXICAL STRUCTURE TABLE

The first table (see Appendix) displays the lexical structure and the pro-
ceduyre headings. (The term procedure means procedure, function, or program
i{n this documentation unless otherwise stated.) As the program 1is read,
each heading is printed out with the line-numbers of the lines in whiceh it
occurs. The text is indented on the first 1line so as to display the

[T4 SHIN 1YISYd

0857 "UIMNYY

8T 39vd




lexical nesting. Subsequent lines are adjusted left or right so as to
maintain their relative position with respect to this *mother' line. On
rare occasions 1L may not be possible to achieve this adjustment if there
are insufficient leading spaces to delete on the dependent lines, and then
the display will suffer.

In this context, Lhe 'procedure heading' is taken to mean all the text
between and including the opening reserved word of the heading, and the
semicolon that separates it from the text that follows, What will be
printed 1is everything contained on the lines thal contalin this heading.
While this definition of procedure heading is not the one in the draft Pas-
cal Standard, it is a pragmatic convenience Lo consider it thus rather than
as the syntactic construct.

The prime use of this Lable is in undersianding programs; it documents the
interfaces to each procedure, Lheir lexical nesiting, and where the headings
are- located .

4. THE CALL-STRUCTURE TABLE

The second table is produced after the program has been scanned completely,
and ‘is the result of examining the internal data. For each procedure
listed in alphabelical order, the Lable holds:

- The line-number of Lhe line on which its heading slarts.
~ Unless it was external or formal {(and had no corresponding block),

the line-number of the bugin thal staris the statement-part (Lhe
body) .

In the Notes column, Lhe characters 'exi' are printed if tLhe pro-
cedure has an external body (declared wilh a directive other than
forward), and the characters 'fml' are printed if it is a formal pro-
cedural or functional parameter, If a number appears, Lhe procedure
has been declared forward and this is the line-number of the 1line
vhere the block of the procedure begins; the second part of the two-
part declaration.

- A list of all user~declared procedures jimmediately called by this
procedure., In other words, their c¢all 1is contained in the
statement-part, The list 1s in order of occurrence in the tLext; a
procedure is not listed more than once if it is called more often,

This table may be useful in finding the components of a procedure as Lhey
are squashed into different places in Lhe listing by Lhe flatiening effects
of syntax, It may also be useful in seeing the inter-dependencies of the
procedures of Lhe program,

2. LIMITATIONS

As mentioned before, Lhe behaviour of Referencer when presented with
incorreot Pascal programs 1is not guaranteed. However, it has been the
intention that it be fairly robusty, and there are nol Loo many flaws that

will cause {t to fail, The most critical features, and therefore those
likely to cause fallure if nol correctL are the general structure of the
procedure heading (reserved word followed by name with optional parameter-
list with balanced parentheses followed by semicolon and either reserved
word or directive), and the correct matching of gnd with each begin or gage
in each statement-part (since this information is used to deteclL the end of
a procedure).

If an error is explicitly detected, and Referencer has very few explicit
error checks and minimal error-recovery, a message is printed out that
looks like this:

FATAL ERROR - No identifier after prog/proc/func - AT FOLLOWING LINE
procedure { L : TransactionType );

The 1ine of text printed is where the program was when it got into trouble;
like all diagnoses this does not guaraniee that Lhe correcl parentage is
ascribed Lo the error. Processing may continue despite the fatal error for
a while, bul the second table will not be produced.

Referencer i1s believed to accept the full Pascal language, as described in
the draft proposal submitted to ISO, and to process it correctly.

S PORTARILITY

It 1s believed that Referencer uses only Standard Pascal features according
Lo the draft proposal submitted to IS0,

IL should be relalively easy to transfer it to other Pascal processors., It
does not use packing, except for pseudo-sirings of characters., Neither
does it use dispose, Lhough a possible usage 1s marked in the program. The
small amount of data stored does not warrant their use if it might imperil
portability. It requires the use of small sets of at least set of 0..15,
and a set of char. Those who have not a set of char available can fairly
easily program around it, and complain to their Pascal suppliers. The
names are stored internally in a canonic letter-case {lower-case in Version
5-02.01), with a set indicating those Lo be transformed on output. This
strategy should enable users Lo modify 1t Lo run even on CDC*'s 646 bit
lower-case system, and on one-case systems. The program implements the
Pascal Standard's atlitude Lowards letter-case.

1. SYSTEM NOTES AND MODIFICATIONS

L.l PARAMETERIZED CONSTANYS

The heading of the program contains information on altering:

- The significance limit of identifiers (currently 16 characters).
This should nobt be reduced below 10 es 1t will be difficult Lo dis-
tinguish identifiers and reserved words.

LT# SHIN TYISVd

0867 “HOMYW

5T 39vd



The difference belween upper-case and lower-case letters, EBCDIC
users will probably need Lo change only this single constant.

The line width for Lable 2, which aulomatically affects the number of
columna of called procedure names, The distributed version has this
set at 132, which allows 5 columns of 16-character names across the
page. Selting 1L to 54, which allows a single column, is an useful
variation.

~ The number of indentation spaces per level,

L.2__INIERNAL STRUCTURES

Procedure information is held in an 'Entry' record, each of which is linked
into two binary trees by alphabetical order of name (ignoring letter-case).
Each 'Entry' record contains a linked list of 'UsageCell's which point to
procedures called from that procedure, There is also a lexical stack
display, composed of 'StackCell's, Similarly, these point to the currenily
nested procedures during the first phase of processing. Each stach cell
also contains a root pointer which holds a "scope-tree" which contains all
Lthe names declared at this level. A single "super-tree" contains all the
procedure names. The scope-trees are traversed during searching for names,
and the superiree is used Lo produce the final table.

The final tables are capable of further interpretation which has not been
done here in the interesis of simplicity of the resulling software tool.
For example, recursivity may be deduced from the data, and small modifica~
tions would allow the keeping of call-frequency counts,

As mentioned earlier, each name is separated into a case-independent com-
ponent and a solely-case component for storage. The identifiers are recon-
structed al the time of display. In the case where not all occurrences of
an identifier have the same visual representation, Referencer will thus
still recognize them as the same, and will use the first occurrence as the
display form. Referencer could easily check the identity of such forms,
but any error messages would spoll the tables and it has not been done 1in
line with the philosophy that each tool has a particular purpose.
General-purpose tools are often such compromises that they are successful
at none of their tasks.,.

13 _EFFICIENCY

As might be expected, Referencer spends most of its time in NextCh, NextTo-
ken, Readldent, IgnoreComment and FindNode. As a guide, the following
information was collected while Referencer processed its own text, The
counts under the "Statements" column are the maximum statement counts for
any statement within the procedure body. All counts have been rounded and
depend to some extent on the use of spaces and tabs in the source file,

Procedure Calls Statements
NextCh 30800 30800
NextToken 2600 8700
ReadIdent 1600 9300
FindNode 3800 4500
IgnoreComment 102 13500

veu coe cas

The space usage of Referencer is very small, except perhaps for Lhe program
itself.

On Berkeley Pascal running under UNIX on a PDP-11/38, processine Referencer
by 1itself requires sbout 96 seconds of processor Lime, This is about 10.6
1ines per second., The code occupies about 9,000 bytes of storage. Berke-
ley Pascal 1is an interpretive system intended for studeni users, and is
therefore rather slow in comparison with compilers with native code genera-
tion,

§. ERROR REPORTING

If any errors in proces=sing Standard Pascal programs are detecied, please
write to the author at the following address with the exact details. Prob-
lems with processing incorrect or non-Standard programs are nol interest-
ing.

Prof A.H.J.Sale

Department of Information Science
finiversity of Tasmania

uox 252C, G.P.O. Hobart

Tasmania 7001

Any experiences wilh Lhe portability of this tool are also welcomed. A
Technical Report on its design and structure is in preparation,

2. _HISTORY

This program grew out of the proper haunis of good ideas (the coffee-room)
and several discussions of what one would 1ike from such a tool.
A.J.Currie, at Lhe University of Southampton, produced the first prototype
program of 231 lines. Based on Lhis experience and the problems in accept-
ing the full Pascal languasge, A.H.J.Sale (on leave from the Unlversity of
Tasmania) wrote the current version of just over 1000 lines. The resulting
program is now aboul 20% slower than Lhe prolotlype, bul it is belleved to
be a more modifiable and a correct tool,

The currenl program was written i{n 4 days. It does not fit into any
integrated system of software tools but has been designed with the basie
view that software tLools should be plentiful, correct, portable, flexible,
and single-purpose. All attributes are equally important.

Adbur Sl
PAGR AR AR A A A A i A g

LT# SHAIN TYISVd

086T “HIYYW

0¢ 39v




0001
0002
0003
000k
0005
0006
0007
0008
0009
0010
oo
0012
0013
001k
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
004k
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065

program Referencer{(input,output);

» PASCAL PROCEDURAL CROSS-REFERENCER

(¢) Copyright 1979 A.H,J.Sale, Southampton, England.

DE VELOPMENT

This program i3 a software tool developed from a prololype by
A.J.Currie at the University of Southampton, England. The proto-
type of 231 lines of source text was used firstly as a basis for
ex tensions, and Lhen rewritien to assure correclness by
A.H.J.Sale, on leave from Lhe University of Tasmania and then
also at the University of Southampton. The currenl version was
stabilized at 1979 December 4; Lhe developmenlt time being es-
timated at 4 man-days from prototype to production.

{

1

1

[}

1

'

+

[

1

|

i

[}

'

'

i

'

|

!

[}

1

)

1

1

]

i

!

| PURPOSE

| The program reads Pascal source programs and produces Lwo tables
| as output. These tables are procedural documentation and cross-
H references. One documenis all procedure or function headings in
| a formal that 1llustrates lexical nesting. The other tables
!
|
|
[
1
i
1
]
1
+
i
)
]
{
!
'
E
1
1
1
i
i
1
'
|
H

gives Lhe locations of heading, block, and body for each pro-
cedure and function, and what procedures and functions 1t immedi-
ately calls,
There is a User Manual for this program; if it has not been vypro-
vided with your installation write Lo:
Depariment of Information Science
University of Tasmania
P.0.Box 25%2C, G.P.0, Hobart
Tasmania 7001
and ask for the Technical Reporti on Referencer, if 1it° is still
avallable., The program is written to be portable and is believed
to be in Standard Pascal,
Permission is granted Lo copy this program, slore it in a compul-
er system, and distribute it, provided that this header comment
is retained in all copies.
{emmememmmnerem it em—ceoman - — ———
|
| PROGRAM ASSERTIONS
1
)
{  Pre-Assertion Pi:
! "The file input contains a representation of a correct
H Standard Pascal program, in the ISO Reference form,"
)
|
{ Post-assertion P2:
' P1 and "the file output contains a representation of Lhe
| two tables described above, which correctly describe facts
H about Lhe program."
]
A S
const
{ This constant is the number of significant characters kept in
the identifier entries. It can readily be changed., IL is not
advised that it be reduced below 10 (reserved words get to 9). }
SigCharLimit = 163
{ This must always be (SigCharLimit - 1), IL is used simply to
reduce the sel range Lo have a lower bound of 0, not 1. }

7

0066 SetlLimit = 15;
0067
0068 { This constant is used to convert upper-case letters Lo lower-case
0069 and vice-versa, It should be equal to ord{('a') - ord('A'). }
0070 UCLCdisplacement = 32;
0071
0072 { This constant determines the size of the input line buffer.
0073 The maximum acceptable input line is one smaller because a sentinel
0074 space is appended to every line. }
0075 LineLimit = 200;
0076
0077 { This constant determines the maximum width of the printing of Lhe
0078 second cross-reference table., The program deduces how many names
0079 will fit on a line. }
0080 LineWidth = 132;
0081
0082 { This determines the indentation of the lex-~levels, }
0083 Indentation = U;
0084
0085 { These constants are used for the sketchy syntax analysis.
0086 They are collected here s0 that their lengihs may be altered if
0087 SigCharLimit is altered, }
0088 Sprogram sz 'program '
0089 Sprocedure = 'procedurs '
0090 Sfunction =z *function A
0091 Slabel = 'label '
0092 Sconst = ‘'‘consi A
0093 Stype = 'type A
0094 Svar = 'var i
0095 Sbegin = ‘begin L
0096 Scase = ‘case '
0097 Send = ‘end '
0098 Sforward = *forward '
0099 Spaces = ! LN
0100
0101 type
0102 Natural = 0,.maxint;
0103 Positive = 1,.maxini;
o104
0105 SixChars = packed array{1..6] of char;
0106 ’
0107 SigCharRange = 1,.S81gCharLlimit;
0108 SetRange = 0..Setlimit;
0109
0110 PseudoString = packed array [SigCharRange] of char;
o111 StringCases = set of SetRange;
0112
0113 t.ineSize = 1,.LineLimit;
0114 ‘LineIndex = 0,.LineLimit;
0115
0116 SetOfChar =z sel of char;
0117
0118 ProcKind = (FwdHalf,Al1Fwd,Shortform,Formal,Outside,NotProc);
0119
0120 PLrToEntry = | Entry;
0121
0122 ListOfUsages = | UsageCell;
0123
o124 PLrToStackCell = | StackCell;
0125
0126 TokenType =z (OtherSy,NameSy,LParenSy,RParenSy,ColonSy,
0127 SemiColSy,PeriodSy,AssignSy, SubRangeSy);
0128
0129 { This type represents a procedure or function identifier found

LT# SMIN VYISvd

086T “HIYYW

12 39Vd



0194

0130 during processing of a program. The fields are used as follows: 0195 token : TokenType;

ot3t - procname & caseset = representation of name 0196

0132 - linenumber = where heading starts 0197 .symbol + PseudoString;

0133 - startofbody = where begin of statement-part starts 0198 symbolcase : StringCases;

0134 - forwardblock = where forward-declared block starts 0199

0135 - status z kind or status of name 0200 savesymbol + PseudoString;

0136 - left,right = subtrees of the scope~level tree 0201

0137 - before, after = subtrees of the supertiree 0202 line + array({LineSize) of ohar;

0138 - calls = a 11st of the procedures this calls 0203

0139 - localtree = the scope tree for the interior 0204 superroot : PtrToEntry;

0140 } 0205

ot Entry = 0206 stack : PtrToStackCell;

o142 record 0207

0143 procname : PseudoString; . 0208 { The remaining variables are pseudo-constants. }
(L1 caseset : StringCases; ¢ 0209 alphabet : SetOfChar;

0145 linenumber .. Natural; 0210 alphanums 1 SetOfChar;

0146 startofbody : Natural; 0211 uppercase : SetOfChar;

0147 left,right  : PtrToEntry; 0212 digits : SetOfChar;

0148 before,after : PtrToEntry; 0213 usefulchars : SetOfChar;

0149 calls : ListOfUsages; 0214

0150 localtree : PtrToEntry; 0215 namesperline : Positive;

0151 case status: ProcKind of 0216

0152 FwdHalf,Shortform,Formal ,Outside,NotProc: 0217 procedure PrintlLine;

0153 [OH] 0218 var

0154 AllFwd: 0219 i : LineSize;

0155 ( forwardblock: Natural ) 0220 begin

0156 end; 0221 weite(output, lineno:S, ' ')

0157 0222 i 1= 1

0158 { This type records an instance of an activation of a procedure or 0223 { Is this the first time in a run or not? }
0159 funclion. The next pointers maintain an alphabetically ordered 0224 1f adjustment = First then begin

0160 1ist; the what pointer points to the name of the activated code, } 0225 { 1gnore any leading spaces there happen to be. }
0161 UsageCell = 0226 while (1 < total) and (1ine(i] = ' ') do
0162 record 0227 1 1z succ(i);

0163 what: PtrToEntry; 0228 { Compute the adjustment needed for other lines, }
0164 next: ListOfUsages 0229 movement := (level * Indentation) - (1 - 1);
0165 end; 0230 ad justment := Other;

0166 0231 { Insert any necessary indentation }

0167 { This type is used Lo construct a stack which holds the current 0232 if level > 0 then .

0168 lexical level information, } 0233 write{(output, ' ': (level®Indentation));
0169 StackCell = 0234 end e¢lse begin

0170 record 0235 { It wasn't the first time, so try to adjust this
017 ecurrent: PtrToEntry; 0236 line to align with its mother. }

0172 scopetree: PtrToEntry; 0237 if movement > 0 then begin

0173 substack: PtrToStackCell 0238 write(output, ' ':movement)

0174 end; 0239 end else if movement < O then begin

017% 0240 while (1 < total) and (line(i} = ' ') and
0176 var 0241 (1 <= -movement) do begin

0177 1ineno ¢ Natural; 02u2 i 1= suce(d)

0178 chno : Linelndex; 0243 end

0179 total ¢ Linelndex; 0244 end

0180 depth ¢+ Natural; 0245 end;

0181 level t ~1.,maxint; 0246 { Write out the line. }

0182 pretty : Natural; 0247 while 1 < total do begin

0183 02u8 write{output, line{1});

0184 ( These are used Lo align the lines of a heading. } 0249 4 e suce(i)

0185 ad justment  : (First,Other); 0250 end;

0186 movement, : integer; 0251 writeln({output)

0187 0252 end; { Printline }

[ .t) {These are true, respectively, if line-buffers need to be 0253

4] printed before disposal, and if any errors have occurred. } 0254 procedure Error(e: Positive);

(g ] printflag : Boolean; 0255 { This procedure is the error message repository. }
bt al errorflag + Boolean; 0256 begin

0192 0257 errorflag := true;

0193 ch : char; 0258 write{output, 'FATAL ERROR - ');

LT# SHIN TYISVd

086T “HOUVW

Z7 39



0259

0260

0261

0262

0263

0264

0265

0266
0267

0268
0269
0270
0271

0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322

cage e of
: write(output, *No "program" word');

2: write(output, 'No identifier after prog/proc/ func');

3: write(output, 'Token after heading unexpected');
4: write(output, 'Lost "%, check begin/case/ends');
5:

: write{output, 'Same name, but not forward-declared')

end;
{ We shall print the offending line too, }
writeln(output, ' - AT FOLLOWING LINE');
adjustment := First;
Printline

end; { Error )

procedure NexiCh;
begin .
if chno = total then begin
if printflag then
Printhine;
total := 0;
while not eoln{input) do begin
total :z succ(total);
read(input, line{totall)
end; ‘
total :=z succ(total);
line{total] := ' '3
readln(input);
lineno := lineno + 1;
chno := 1;
ch := line{1]
end else begin
ohno := succ{chno);
ch := linelchno)

end
end; { NextCh }

procedure Push(newscope: PtrToEntry);
var

newlevel: PtrToStackCell;
begin

new(newlevel);

newlevell .current iz newscope;

newlevell .scopetres :s nil;

newlsvel] ,substack := stack;

stack := newlevel;

level := level + 1
end; { Push }

procedure Pop;
var
oldcell: PtrToStackCell;
begin
stack?.current?.localtree := stack!.scopetree;
oldcell := stack;
stack :s oldcell?.substack;
{ **% dispose(oldcell); %% }
level := level - 1

end; { Pop }
procedure FindNode(var match : Boolean;
var follow : PtrToEntry;
thisnode: PtrToEntry);
begin

match := false;
while (thisnode <> nil) and not match do begin

0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
031
03u2
0343
0344
0345
0346
0347
03u8
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386

follow :z thisnode;

i1f savesymbol < thisnodef.procname then
thisnode := thisnode!.left

else if savesymbol > thisnode? .procname then
thisnode := thisnode}.right

else
match = true

end
end; { FindNode }

function MakeEniry (mainprog: Boolean; ’
proc 1 Boolean): PLrToEuntry;

{ The first parameter is true if the name in symbol is the
program identifier, which has no scope. The second parameter
1s true if the name in symbol is that of a procedure or function,
The result returned is the identification of the relevant record. }
var

newentry, node: PLrToEntry;

located: Boolean;

procedure PutToSuperTree(newnode: PtrToEntry);
{ This procedure takes the entry that has been created by
MakeEntry and inserted into the local iree, and also links
it into the supertree. )
var

place : PtrToEnlry;

procedure FindLeaf;
{ FindLeaf searches the supertree Lo find where this
node should be placed. It will be appended to a leaf
of course, and placed after entries with the same
name. }
var
subroot : PtrToEntry;
begin
subroot :=z superroot;
while subroot <> nil do begin
place :s subroot;
if savesymbol < subrootl}.procname then
subroot := subroot}.before
else
subroot :z subrootf.after
end
end; { FindLeaf }

begin { PutToSuperTree }
if superroot = nll then begin
{ Nothing in the supertree yet. }
R superroot = newnode
: end else begin
{ Seek the right place }
FindLeaf;
with placel do begin
if savesymbol < procname then
before :s newnode
else
after :=z newnode
end
end
end; { PutToSuperTree }

begin { MakeEntry }
located := false;
savesymbol :=z symbol;

LT# SMIN TYISYd

0867 “HIYYW

¢ 3vd



0387 if mainprog then begin 0451 { Write either the substitute string or a number, }
0388 new( newentry); ous2 if n = 0 then

0389 end else if stack!.scopetree = nil then begin 0453 write{output, substitute)

0390 { Nothing here yot. } o4sh else

0391 new{newentry); ous5 write(output, n:6)

0392 stack?.scopelree := newentry 0456 end; { ConditionalWrite }

0393 and else begin ous7

0394 { Seek the identifier in the tree. } ous58 procedure NameWrite(p : PtrToEntry);

0395 FindNode(located, node, stack!.scopetree); ous9 var

0396 if not located then begin 0460 s : SetRange;

0397 { Normal case, make an entry. } 0461 begin

0398 new(newentry); o462 - for s := 0 to SetLimit do begin

0399 with node! do ous3 if s in pl.casesst then

0400 if aymbol < procname then 046l write(output,

0ot left := newentry ouss chr(ord(p!.procnamef s+1])-UCLCdisplacement))
0402 else 0466 else

0403 right t= newentry ou67 write(output, pl.procnamels+1])
ohol end 0u68 end

0405 end; 0u69 end; [ NameWrite }

0406 if not located then begin Q470

o407 { Here we initialize all the fields } oum begin { PrintTree }

ouo8 with newentry? do begin 0472 if root <> nil then

ou09 procname := aymbol; o473 with root] do begin

ou1o casesetl iz symbolcase; oLy PrintTree(before);

o411 linenumber :z lineno; 0475

oN12 startofbody := 0; ouTé writeln{output);

o413 1f proc then o477 write{output, linenumber:5);

o4y status := Shortform 0478 ConditionalWrite(startofbody, ' )
0415 else 0479 case status of

0416 status := NoiProc; 0480 FwdHalf,NotProc:

o7 left.  := nil; 0481 write(output, ' eh?');
0418 right := nil; ou82 Formal:

ou19 before := nil; ous3 write(output, ' fml');
o420 after :z nil; ou8y Outside:

ou21 calls ::z nil; 0u48s write(output, * oxt');
ou22 localtree :z nil 0486 Shortiform:

0ou23 end; 0uB7 write{output, ' ')
ol2h MakeEntry := newentry; 0488 Al1Fwd:

o025 if proc then begin 0489 write(output, forwardblock:6)
ou26 PutToSuperTree(newentry); 0490 end;

o427 Push(newentry) 0491 write(output, ' ');

0428 end 0492 NameWrite(root)

ou29 end else begin 0493 write(output, ' :');

0430 { Well, 1t'd better be forward or elss. } ough thiscell := ocalls;

0431 MakeEniry := node; oug5 count := 0

0432 Push(node); 0k 96 while thiscell <> nil do begin

0433 if nodel.status = FwdHalf then begin 0497 if {(count mod namesperline) = 0) and (count <> 0)
o434 stack! .scopetree iz nodel.localtres; 0k98 then begin

0435 node! .status := ALl1lFwd; 0499 . writeln(output);

0436 node! . forwardblock := lineno 0500 ' write(output, ' ':35, ' :')
0437 end else begin 0501 end;

o438 Error(5) 0502 write(output, ' ');

0439 end 0503 NameWrite(thiscellf .what)

o4u0 end 0504 thiscell := thiscellf.nexti;
o4yt end; { MakeEntry } 0505 count :=z count + 1

o442 0506 end;

Oh43 procedure PrintTree(root: PirToEntry); 0507 writeln(output);
o4hy var 0508
ouus thiscell: ListOfUsages; 0509 PrintTree{after)
0446 count: Natural; 0510 end
ouyT7 0511 end; { PrintTree }
ouks procedure ConditionalWrite(n: Natural; 0512
ouu9 substitute: SixChares); 0513 procedure NextToken;
0450 begin ! 05114 { This procedure produces the next "token" in a small set of

0515 recognized tokens, Most of these serve an incidental purpose;

LT# SMIN TVISYd

0861 “HINVMW

hZ 39V



0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
o541
o542
0543
o544
0545
0546
o5u7
osu8
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579

the prime purpose is Lo recognize names (res'd words or identifiers).
It serves also to skip dangerous characters in comments, strings,
and numbers. }

procedure IgnoreComment;

{ This procedure skips over comments according to the definition

in the Draft Pascal Standard. }

begin
NextCh;
repueat
while (ch <> '®') and (ch <> '}') do
NextCh;
if ¢h & '#' then
NextiCh;
until (eh = ')') or (ch = '}');
NextCh;

end; { IgnoreComment }

procedure IgnoreNumbers;
{ This procedure skips numbers because the exponent part
just might get recognized as a name! Care must be taken
not to consume half of a ".." occurring in a construct like
"1,.Name", or worse Lo consume it and treat the name as an
possible exponent as in "1..E02", Ugh, ]
begin
while ch in digits do
NexiCh;
{ The construction of NexiCh, ohno & line ensure that
the following tesls are always defined. It is to get
rid of tokens which begin with a period like .. & .) }
if (ch = '.') then begin
if (linelchno+1] in digits) then begin
NextCh;
while ch in digits do
NextCh
end;
end;
if {(ch = 'E’) or (ch = 'e') then begin
NextCh;
if (ch = '+*') or (eh = '-') then
NextCh;
while ch in dipits do
NextCh
end
end; { IgnoreNumbers }

procedure Readldent;
{ This procedure reads in an identifier }
var
J & Positive;
begin
Loken := NameSy;
symbol :s Spaces;
symbolcase := [};
J = V3
while (3 <= SigCharLimit) and (ch in alphanums) do begin
if eh 1n uppercase then begin
symbol[ 3] := chr(ord(ch) + UCLCdisplacement);
symbolcase := symbolcase + [3-1)
end else begin
symbol[ 3] := ch
end;
J o= 41
NextCh

0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
Qbu2

end;
{ In case there is a tail, skip it, }
while ch in alphanums do
NextCh
end; { Readldent }

begin
token := OtherSy;
repeat
if ch in usefulchars then begin
cass ch of

')': begin
NextCh;
token := RParenSy
end;

(' begin

NextCh;

if ch = '®' then begin
IgnoreComment

end else begin
token := LParenSy

end

end;

'{*: vegin
IgnoreComment
end;

114 begin
NextCh;
while ¢h <> '''!' do
NextCh;
NextCh
end;

Ioi'lll.l2|'l3|'|“l'l5|'|6|"7l,|8I,I9I:
begin
IgnoreNumbers
and;

Y:': begin

NextCh;

if ch = *=' Lhen begin
token := AssignSy;
NextCh

end else begln
token := ColonSy

ond

end;

',': begin

NextCh;

if ch <> ', then
token := PeriodSy

else begin
token := SubRangeSy;
NextCh

end

end;

t;': begin

LT# SMIN TYISYd

Ng6T "HIYYW

ST 39vd



0643
o644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
o704
0705
0706

NextChj
token := SemiColSy
end;

lAl'lBI.lCl’!Dl'|El’IFO.IG!'IHI'III'IJI'IKl'lLl"Ml,
'Nl’IOI.IPI'CQI'IRI"S|'IT|'IU"IVQ.IHI'IXI’IYI’|zl'
lal ’Ibl "O','d"'ﬁ"'f' .lgi 'Ihl'lil'lJl'lkl,lll,lmQ'
lnl'lol .ipl,'q"lrl,lsl’lt‘l,lul'ivl'lwl'lxl ,lyl'lzl:
begin
Readldent
end

end
end else begin
{ Uninteresting charactier }
NextCh
end
until token <> OtherSy
end; { NextToken }

procedure ProcessUnit(programid: Boolean);
{ This procedure processes a program unit. It is called on
recognition of its leading token = program/procedure/function,
The parameter records whether we currently have the main program
identifier in the token, or not. It doesn't have scope. }
var

at : PtrToEntry;

function NameIsInScope: Boolean;

{ This function is called during the declaration phase
of a block, and has to find any procedure which gets
renamed by the scope rules, }

var
llevel 1 PtrToStackCell;
discovered : Boolean;
where : PtrToEntry;
begin

llevel := stack;
discovered := false;
savesymbol := symbol;
while (1level <> nil) and not discovered do begin
FindNode(discovered, where, llevell.soopetree);
if not discovered then
llevel :=z llevell.substack
end;
if discovered then
NamelsInScope := (wherel.status <> NotProc)
else
NameIsInScope :z false
end; { NameIsInSoope }

procedure ProcessBlock;

{ This procedure is called by ProcessUnit when it .has recognized
the start of a block. It handles the processing of the block. ).

var
address: PtrToEntry;

procedure CrossReferencer;
{ CrossReferencer is called whenever we have a name which
might be a call to a procedure or function. The only way

we tell is by looking in the table to see. If it is, then
the list of usages of the procedure we are in is scanned and

poseibly extended. }
var

0707
0708
0709
0710
o711
o712
0713
o714
0715
0716
0717
0718
0719
0720
0721
0722
0723
o724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
o744
0745
o746
0747
o748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770

newcell : ListOfUsages;

ptr : ListOfUsages;
home + PtrToEntry;
slevel : PtrToStackCell;
found : Boolean;

procedure FindCell;
{ FindCell is used to scan a List Of Usages to determine
whether the name already appears there, -If not, it
leaves ptr pointing to the tail of the list so that an
addition can be made. }
var
nextptr : ListOfUsages;
begin
found :z false;
nextptr := stack!.currentf.calls;
if nextptr <> nil then
repeat
ptr := nextpir;
found :s (ptrl.whatl.procname = savesymbol)
nextptr := ptrl.next
until found or (nextptr = nil)
else
ptr :z nil
end; { FindCell }

begin { CroasReferencer }
slevel := stack;
found :=z false;
while (slevel <> nil) and not found do begin
FindNode(found, home, slevell.scopetres);
if not found then
slevel := slevell.substack
end;
if found then begin
if homef.status <> NotProc then begin
FindCell;
if not found then begin
new(newcell);
if ptr <> nil then
ptr!.next :z newcell
else
stack!.currentf.calls := newcell;
newcelll .what :z home;
newcelll .next := nil
end
end
end
end; { CrossReferencer }

procedure ScanForName;
{ This procedure is required to go forward until the
current token is a name (reserved word or identifier). )}
begin
NextToken;
- .while token <> NameSy do
NextToken
end; { ScanForName }

begin { ProcessBlock }
while (symbol <> Sbegin) do begin
while (symbol <> Sbegin) and (symbol <> Sprocedure) and
(symbol <> Sfunotion) do begin
ScanForNase;

LT# SMIN TYISVd

0861 “HIUVW

97 39vd



o771
0772
0773
0774
0775
0776
0771
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
080M
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834

if NameIsInScope then begin

end
end;

address :s MakeEntry(false, false);
{ MakeEntry made its status NotProc }

if symbol <> Sbegin then begin
ProcessUnit(false);

ScanForName
end
end;
{ We have now arrived at the body }
depth := 1;
stack! .current!.startofbody := lineno;
NextToken;

while depth

<> 0 do begin

if token <> NameSy then begin
Nextloken
end else begin
if (symbol = Sbegin) or (symbol = Scase) then begin

end

end

end
end
end

depth := depth + 1;

NextToken

else if (symbol =z Send) then begin

depth := depth - 1;

NextToken

else begin

{ This name is a candidate call. But first we

must eliminate assignments to function values, }

savesymbol := symbol;

NextToken;

if token <> AssignSy then begin
CrossReferencer

end else begin
NextToken

eond

end; { ProcessBlock }

procedure ScanParameters;
{ This procedure scans the parameter list because at the outer
level there may be a formal procedure we ought to know about. ]

var

which : PtrToEntry;

procedure ScanTillClose;
{ This procedure is called when a left parenthesis is
detected, and its task is to find the matching right

parenthesis,
begin

It does this recursively. }

NextToken;
while token <> RParenSy do begin
if token = LParenSy then

ScanTillClose;

NextToken

end

end; { ScanTillClose }

begin { ScanParameters }

NextToken;
while token

<> RParenSy do begin

if (token = NameSy) then begin

ir (

symbol = Sprocedure) or
(symbol = Sfunction) then begin

0835
0836
0837
0838
0839
o8uo
08h1
0842
0843
o8ul
o8us
08ué
o847
o8us
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896
0897
0898

end

end
end;

{ A formal procedural/functional parameter. }
NextToken;
if token = NameSy then begin
which := MakeEntry(false, true);
which].status := Formal;
Pop;
NextToken;
if token = LParenSy then begin
{ Skip interior lists, }
ScanTillClose
end
end else begin
Error(2);
NexiToken
end
end elae begin
if NameIsInScope then
which :=z MakeEntry(false, false);
NextToken
end
else begin
NextToken

NextToken
end; { ScanParameters }

begin { ProcessUnit }
printflag := true;
adjustment :s First;

NextToken;
if token <>

Error(2)

else begin

NameSy then

{ We now have the name to stors away. }
at := MakeEntry(programid, true);
while not (token in [LParenSy,SemiColSy,ColonSyl) do
NextToken;
if token = LParenSy then
ScanParameters;
while token <> SemiColSy do
NextToken;
Printline;
{ We have now printed the procedure heading. }
printflag := false;
writeln{output);

{ Our next task is to see if there is an attached block. }

NextToken;
1f token <> NameSy then
Error(3)
else begin
1f (symbol <> Slabel) and (symbol <> Sconst) and

end

(symbol <> Stype) and (symbol < Sprocedure) and
(symbol <> Sfunction) and (symbol <> Svar) and
(symbol <> Sbegin) then begin
{ Bloody directive, mate. }
if symbol = Sforward then
at}.status := FuwdHalf
else
atf.status := Outside;
Pop
else begin
ProcessBlock;
Pop

LT# SMIN TYISYd

0867 “HIYYW

[T 39vd



0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
091k
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
094k
0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962

end
end
end
end; { ProcessUnit }

This procedure outlines what is needed to lnsert the
predefined nases into Referencer's tables. De-box 1t
and extend it as needed.

procedure BulldPreDefined;
const
NoOfNames = 2;
type .
NamesIndex z 1, .NoOfNames;
var
kk : NameslIndex;
tt  : array[Nameslndex] of PseudoString;
hohum: PtrToEntry;
begin
tL[01] := 'new '
te[02) 1= 'writeln- '
caseset := {];
for kk := 1 to NoOfNames do begin
symbol := tt{kkl;
hohum := MakeEntry(false,false);
hohum? ,status := Outside;
end;
end;

ot o e e - - ———— " —— —— — e e

procedure PrintHeading;
begin

writeln{output, 'Procedural Cross-Referencer - Version §-02.01%');

writeln(output, '====s=zz=z=zss=sssssszzsssseszzszssasasssssass
writeln{output)
end; { PrintHeading }

begin { Referencer }

superrool ::= nil;

{ Here we construct an outer-scope stack entry, This ls needed
Lo hold any pre-defined names, The distributed version does not
include any of these, but they are easily provided. See the
outlines in the code marked with *## if you want this feature. }
new(stack);

with stack! do begin

current := nil;
scopelree := nil;
substack := nil

end;
printflag := false;

uppercase = [lAl'!BI'ICI,lDV’IEI'IF"i(;"IHI’III,IJI’th'IL|"Ml'
INI,!O','P!'IQ"'RQ'ISV"Tl’lul.lv|'!wl'lx|'|y"l1|];

al phabet = uppercase +

[tal,lbl'lcl'|d|'le!'lrv"g|'lhl'ljﬁ'lj"'kl'Ill'lm"

l"l'lol’Vp"'q"lr0’IBI’|L|’Iul'lv|.lwl'lxl'iyl'lz'];

digits S [-0','1-,'2','3','u','5','6','7','8','9'];

alphanums :c alphabel + digits { ##% 4 [+ ] #ew )}

usefulchars :x alphabet + digits +

[|(|' |)', |(l' |'v' to, l;l, u||];

0963

0964 namesperline := (LineWidth - (SigCharLimit + 21)) div

0965 (SigChartimit + 1);

0966

0967 { **® If you want to introduce some options, this is the place
0968 to insert the call to your OptionAnalyser. None is provided
0969 with the standard tool because the requirements vary widely
0970 across user environments, The probable options that might be
0971 provided are (a) whether pre-declared names should appear in
0972 the call lists, (b) how many columns are to be printed in them
0973 (namesperline), (c¢) whether underscore is permitted in identifiers,
0974 and perhaps whether output should be completely in upper-case
0975 letters. The first option (a) requires a call to BuildPreDefined
0976 Just below Lhis polint, after analysing optioms... )

0977

0978 total :

0979 chno :=

0980 lineno := 0;

0981 level := =1;

0982 errorflag := false;

0983 { ®%¢ ByildPreDefined; *¢# |

0984

0985 { w9# page(output); 4%

0986 PrintHeading;

0987 writeln(output, ' Line Program/procedure/function heading');
0988 for pretty := 1 to 43 do

0989 write(output, '-'});

0990 writeln{output);

0991 writeln(output);

0992 { Now we need to get the first token, which should be program. }
0993 NextToken;

0994 if token <> NameSy then

0995 Error(1)

0996 else If symbol <> Sprogram then

0997 Error(1)

0998 else begin

0999 ProcessUnit(true);

1000 { Having returned, there ought to be a period here. }
1001 if not errorflag then begin

1002 { We check all tokens that bezin with a pariod because
1003 what occurs after the closing period ia no-hing Lo do
1004 with us, |}

1005 if (Loken <> PeriodSy) and (token <> SubRangeSv) then
1006 Error(4)

1007 ulse begin

1008 ad justment := First;

1009 PrintLine

1010 end

1011 end

1012 end;

1013 ‘{ Completed Phase One - now for the next. }

1014 if not errorflag then begin

1015 page(output);

1016 PrintHeading;

1017 writeln(output,

1018 ' Head Body Notes ',

1019 ¢ t:SigCharlimit,

1020 ¢ Calls made Lo');

1021 for pretty := 1 Lo (S1gChartimit+37) do

1022 write(output, '~-');

1023 writeln(output);

1024 PrintTres(superrootl);

1025 writeln(output)

1026 end

1027 end.

LT# SMIN TYISVd

086T “HIYYW

82 39vd



PASCAL NEWS #17

MARCH, 1980

AN OVERVIEW OF MAP

MAP provides four basic additions to Pascal: constant  expression
e.aluation; source file inctusion; parameterized sacro substitution; and
conditional compilation. This section contains a discussion of each 1 these
facitities.

RAP  evaluates constant e.pressions (expressions where operands are
constants or previously defined sysbolic constants) on the right~hand side of
CONST de .. ations. Expressions may contain the following operators (Listed in
wescending precedence):

function: nase (arguments)
negating: NOT -

sultiptying: AND * / DIV MOD RIN MAX
adding: [

relating: s OO D>

concatenating: {one or more blanks)

ALL standard operators have the same meaning as in Pascal, and strong typing is
Jbserved. The operstors MIN and MAX require operands of type INTEGER or REAL
and return the smaller snd larger of their opersnds, respectively.
Concatenation requires operands of type PACKED ARRAY OF CHAR, and returns &
PACKED ARRAY OF CHAR which is their concatenation (the type CHAR is assumed to
be a packed array of one character for concatenation).

MAP recognizes the standard Pascal functions ABS, SR, CHR, ORS, ROUND,
TRUNC, as well as two nonstandard functions, LENGTH and STRINGOF. LENGTH
requires an argument of type PACKED ARRAY OF CHAR or CHAR, and returns the
number of characters in it. STRINGOF requires an integer argument, and returns
a PACKED ARRAY OF CHAR consisting of its decimal representation.

Operands in CONST expressions masy be constants or previously defined CONST
names. Of course, Pascsl scope rules apply to defined names. MAP siso provides
several predefined symbolic constants which can be used in CONST expressions.
Two especially useful predefined names, TINE and DATE, give the time and date on
which the compilation was performed. These predefined constants help when
writing production programs that sust be time snd date stamped. Ffor example, in
a production program a heading is usually printed uhenever the progras runs:

'PROGRAN XYI COMPILED ON sa/dd/yy AT hh:ma:ss®

Such a heading may provide the only Link between an object version .f a program
and its source. Unfortunately, a programmer aay fail to update the heading when
making changes to the program. Using the predefined constants in RAP to create
the heading relieves the progremmer of the updating task and guarsntees the
heading will always ‘e accurate:

CONST
READING = 'PROGRAM XYZ COMPILED OM' DATE ’AT' TINE;

In addition to constant expression evatuation, MAP swplies a wsacro
substitution facility. A macro, which may have zero or more forsal parameters,
say be defined anywhers in the source program using the syntax:

SVEFINE (name{(formals) ,value)

where ‘name’ is a valid Pascel identifier, ‘formals’ is a list of identifiers
separat.d by comsss, and ‘valtue' is a sequence of Pascal tokens which is wetl
balanced with respect to parentheses. Once a macro has been defined, it can be
called by coding .

Sname(actuals)

vhere ‘name’ is the name of the wmacro, and ‘actuals® is a Llist of actual
parameters separated by comsas. Each actual paraseter sust be a sequence of
Pascal tokens which is well balanced with respect to parentheses.

In addition to the user—defined wmacros, MAP recognizes several systes
macros. Definition of a new macro, as shown above, requires the use of the one
such system wmacro, DEFINE. Another system macro, INCLUDE, provides for source
tile inclusion. When MAP encounters a call:

SINCLUDE(file name)

it opens the named file, and continues processing, reading input from the nev
file. Upon encounte ing an end-of-file condition, MAP closes the included file,
and resuses processing the original file. Includes may be nested, but they may
not be recursive (even though there is a way to prevent an infinite recursion).

One say think of ‘include' as a macro whose body is an entire file. This

view, however, does not reflect the fact that the user also expects included
text to be listed like standard input rather than Like the body of a macro.
Yhile macro expansions are ..ot usually displayed in the source Listing, included
files are. Therefore, INCLUDE has a special status among sacros.

One other system macro, CODEIF, is provided to support the conditional
compitation of code. The syntax of CODEIF is:

SCOPELF(constant Boolean expression,code)

where the constant Boolean exp.ession follows the rules for CONST expressions
outlined above, and code represents a sequence of Pascal tokens which is well
balanced with respect to parentheses. If the Boolean expression evaluates to
‘true’, the code is compiled; if the expression evaluates to ‘faise’, the code
is skipped.

REFERENCE

1. o. Comer, 'A Pascal Macro Preprocessor for Large Program Development',
Softuare Practice and Experience ,vol. 9, 203-209 (1979).

PAGE 29



PASCAL NEWS #17 MARCH, 1980 PAGE 30

1 progras ssploutput, psource); m erroutype = ‘evalrou - type error, real needed ‘s

2 112 ersintype = ‘evalsin - type error, number needed °;

3 portable version } 13 ersqrtype * 'evalsqr - type error, number needed °;

4 { ] 1% erstrtype = ‘evalstr - type error, integer needed :;

5 { } 118 ersysipar = 'dosyssac ~ left paren expected H

6 { program : M A P (Macro Pascal) — FPascal preprocessor with |} 116 erteratyp * ‘ters - invalid operand type ';

7 constant expressions, macros, inciuded files, and | 117 ertrutype = 'evaltry = type error, real needed  °;

8 { conditional compilation. (portable version) } 118 ervalexp = 'variable ~ value or name expected i

9 { }119 ervarfnct = 'varisble - unknown function, O used °*;

:2 { date : Pebruary 12, 1978, modified April 30, 1979 } :_‘2,11) ervarrpar = ‘varisble - right paren expected ‘3

{ }

1 cammer : Comesx, r Science Department, Purdue ] greater = '>';

13 s o Compuite pac ]} 123 innsme = "INPUT ; { standard input file nmme )

% { input : A Paacal program with expressions allowed in the ] 12 inlname = ° ; standard input file nmme for |}
15 const values, and macro definitions and calls. 1128 { listing }

16 Macros may be called fram the source code by } 126 letterd = '8%;

17 writing the name prefixed with a dollar sign, with } 127 lettere = 'E';

18 actual parameters supplied as a string } 128 Lparen = '(%;

19 enclosed in parentheses. The actual parameters 1} 129 maxcatls = 15; { max macro call depth )

20 may not contain references to other actual } 130 saxcons = 200; { max active const defns

21 parameters or macros. PFormal parameter references, } 131 naxcol = 120; { max right column for ilwt/ﬂtwt }
2 algo denoted by $name in the body of the macro, )} 132 maxcstr  =1000; { max const string area }

3 override macro definitions, so a macro with formal } 133 maxdefs = 100; { max defined macros !

26 ‘a' cannot call macro ‘a'. Null argument lists ] 134 saxdefstr =4000; { max macro string area |}

25 like () mst be used when calling a macro withno } 135 saxfiles = ; { max included file depth }

26 actual perameters. Null parameters will be used } 136 maxfns = 14; { max recognized functions }

27 | if insufficient actual parameters are specified; } 137 maxkeys = 21; { max recognised language keywords |}
28 extra actusls are ignored. MNote that this differs } 133 saxline = 140; { max characters per input line }
2 { from the version cited in the paper. } 139 wmincol = 70; { =in right colusn for input/output
30 Input sust be in colusns 1 - 'rc' (default 72). 1 140 minus = tet;

31 ] 14 ndefconst = { number of predefined constants }
32 output : Qutput is the file, peource, a caompressed version } 142 {} newline { set to newline character }
3 of the Pascal source deck. The present version ] 143 newpage = { newage carriage control |}

% strips all camments except '(*$' and all the 1] 144 nsysmac = { number of system macros }

35 unnecesary blanks in performing the campression. } 145 pagesize = { lines/page not counting heading }
36 Also, the source is crammed into ‘prc' columns, } 146 period =

37 the default being 71. } 147 plus =

38 ] 148 quote =

39 system : Pascal on CDC 6500, Purdue dual MACE } 149 rparen =

40 } 150 seni =

41 Copyright : (C) 1978. rermission to copy, modify and P15 space = { single space carriage control }
42 distribute, but not for profit, is hereby granted, } 152 star = o

3 { provided that this note is included. } 153 sysinc = 1; { codes for system macros }

M { ] 154 syscodeif = H

45 } 158 sysindex = ;

46 156 sysdefine = ;

47 Llsbel 1 { for aborting I; 157 sysoption = 5;

48 158 titlel ="' RAP (vers 2.0p of 4/30/29) ]
49 const 159 titleta = ' run on *;

50 arrow = 10 { pointer for errors } 160 titleld = ' at °*;

51 blank a0, 161 titte2 =0 inctude pascal';

52 bresk L ] { break between rc and rest of line } 162 titled = ' Line file line Lline source’;
53 comas = ¢t 163 titled 2t e ;
54 defexpr = true; { default is expression evaluation } 164 tities = '
55 deflist = true; { default is listing 165 titleb 2 lomeaaty

56 defprc = 71; { default right column for psscal } 166 zero = '0';

57 defrc = 72; { default right column for map input } 167

58 dolter = 'S, 168

59 double = '0°; { double space carriage control } 169 type

60 equal = ‘=t 170

61 errflag = ' LH] mn atfa acked array(1..10] of char;

62 errprefix = ‘=—> grror *; 172 text = file of char;

&3 errten = 40; { length of error message |} 173

4 174 crng { constant expression stack }
o | crrormessmes ) 176 ey [ oo detimtion st )

6 drng mACTO t.

67 erabstype = ‘evalabs = type error, number needed °'; 177 darng = 0..nxdcfstr, { macro def. string area }
68 erarith = 'grith - bad type ' 178 flrng = 0..maxfiles; { included file stack }
&9 eratntype » ‘gvalatn = type error, number needed °'; 179 fnrng = 0..saxfns; { builtin functions }
70 erbodyeof = ‘getbody « end of file in macro body *; 180 krng 0..maxkeys; { keywords }
ke erchrtype = ‘evalchr = type error, integer needed '; 181 lnrng axiline; { ingut line }
T2 erckipar = ‘ckmacro = Left paren expected \H 182 arng = O..maxcalls; { macro call stack }
3 erckrpar = ‘ckmacro = right paren expected ' 183 pgrng = 0..pagesize; { listing page }
7% ercodcom = 'docodeif ~ syntax error, missing comma'; 184

73 ercodeof = 'docodeif - unexpected end of file L 185 asg = packed array(1..401 of char;

76 oreoctm 3 ‘docodeif - tm error, boolean needed '; 186

mn or =" t - ger truncated ‘5 187 fptr =“formal;

78 crcostyu = ‘evalcos = type error, rnumber needed °; 188

" erdefcom = ‘dodefine -~ missing comma ' 189 format = record

80 erdefname = ‘dodefine =~ syntax error, name needed °‘; 190 nase : alfa; { name of formal parameter )}
8t erexptype = ‘expression - invalid operand type ‘s 191 fnext : fptr

82 erextype = ‘evalexp = type error, number needed °'; 192 end;

3 erfacrpar = ‘factor - right paren expected \ 193

34 srfactype = 'factor - type conflict ' 194

85 erincname = ‘doinclude - file name needed '; 195 tns * (fabs,fatn,fchr, fcos,fexp, { builtin functions }
:g Qrf:rpar = ::13:&: - r:::t paren cxpect: :; :;_6’ flen, fln,fodd, ford, frou, fsin, fsqr, fstr, ftru);

erindrpar = 1 X - right paren expect ;

88 erindxtyp = 'doindex = type error, intsger needed °; 198 Lex = (texadd,lexsub, { order dependent }

89 erlentype = ‘evallen ~ type error, string needed °; 199 Lexand, lexmult, Lexdvd, lexmin, lexnax, texdiv, lexnod,
90 erlntype = ‘evalin - type error, number needed °; 200 Lexatlpha,lexint, Lexreal, Lexst, Lexmac,

:; eriongstr = :go::o: - ft{ingluends source line :; g; texbeg,l.excas,lexend,lexroc,lexfm,lexproc,lucon,

ermacname = ‘gettol = illegal macro name ; exacon,

93 ermacdefn = ‘getbsu - undefined macro call i 203 Llextpe,lexvar, Lexfud,

9% ermconsyn = ‘parseacon - semicolon expected 3 204 Lexor,lexnot,

95 eroctdig = "gettok - illegal octal digit ‘; 205 Lexlt, lexie,lexeq, Lexgt, Lexge, Lexne,

96 eroddtype = 'evalodd - type error, integer needed '; 206 Llexsemi,Lexother,

97 eropen = 'open = recursive includes ignored °; 207 Lexiparen,lexrparen,

93 eropttype = 'dooptions - error in options list '; 208 Lexcomsa,lexeof);

99 erordarg = ‘evalord ~ ord requires 1 char. arg. '; 209
100 erordtype = 'evalord - type error, char. needed ' 210 aptr ="arg;
101 erover = ‘over = table overflow b 21
102 erparscon = ‘parsecon - equal sign needed ' 212 arg = record { argument 1ist node }
103 erparsend = 'parse = unmstched end '; 213 aform : alfa; { formal name
104 erparseof = 'parse - unexpected end of file ; 214 afirst : dsrng;{ start of actual in dstr }
105 erparsfud = ‘parse - unmatched forward decl. ‘s 215 alast : dsrng;
106 erparsmcon= ‘parsescon - equal sign needed '; 216 anext : aptr
107 erpconsyn = ‘parsecon - semicolon expected ' 217 od;
108 erputtok = 'puttok - token too large *: 218
109 errelatyp = ‘retate ~ illegal type for rel. oper.*; 219
10 errelcont = ‘relate ~ type conflict in relation '; 220 constyp = (tbl,tch, terr,tin, tot,tre); { type of const expcession }



PASCAL NEWS #17

2
222
223
24
225
226

227
228

292

312

MARCH, 1980 PAGE 31

cset = set of constyp;

strng = arraylinrngl of cher;

errusg = packed srray(V..errlend of char;

var

ctadb

record
cneme
case ctyp : constyp of

ctop,

tin
tre
tch
thi
tot

arrayfcrngl of [ constant table }

alts;

: (ci : integer);

: (cr : reat);

: (efirst : csrng; clen : csrng);
: (cb : dboolean);

: (co : alfa)

end;
T current top of ctab and last const }
cvatid : ecrng; { last nontemporary constant }

cstr s arraylesrng) of char;{ string const storage }
cstop :ocsrng;
fstack : arrayCtieng) of { included file stack }
record
nane ; atfs; { file name }
ffile : text;
fline : integer
end;
ftop : ~1..maxFiles;
keywd : array(0..maxkeys] of { language keywords }
record
T kname : alfa; { keyword nmse }
klex : lex
end;
sstack : array(srng) of { macro calls }
record
sargs : aptr; { list of arguments }
wnext : dsrng; { next char to read }
mlast : dseng; [ last char in this macro }
matop : dsrng { actual top upon call }
ond;
atop s arng; { top of called macro stack }
defs : arrayldrngd of { macro definitions }
record
sae : alfa; [ macro name i
dfirst: dsrng; { first char in this macro }
dlast : dsrng; { last char in this macro }
dargs : fptr { list of fommals }
ond;
dtop : drng;

defstr : arrayldseng) of char; { macro definition bodies }

dstop 3 dsrng;
atop : dsrng;
funct H
record
nmee
fatyp
end;
intine s strng; {
tast,
next : lnrng; {
ch : char; {
tine : integer; {
pline s integer; |
tee,
dte : alfs;
timein : integer;
tottme :

Linectr : integer;
nerrors : integer;

psource,

{
{
{
integer; |
{
{

{

top of definition string area }

{ actual arguments saved in top of defstr }
array(fnrngl of { list of builtin functions }

alfa; { function name }
fns
input line }

last char and next char in inline }
next character from getch }

last line mmber |}

next pascal output line mmber }

time of day fram system }
date from system |}

clock value at start of run }
total time used in ms

lines 30 far on this page }
mmber of errors found |}

dusey : text; { dummy used for real number conversion |}

reopt,

preopt : lnrng; {
Listopt : boolean; |
expropt  : boolean; {
Lastlex : lex; {
outpos : lneng; {
Lexstr T ostrng; 1
Lexlen : Llnrng; {
Lextyp : lex; {
index + integer; |
confl : set of Llex;

{

right column on input/output |}
list on or off }
recognize expressions on or off }

last token type put by puttok |}
last column pos used by puttok }

lexical string }
mumber of chars in lexstr }
type of token in lexstr }

for $index macro }

set of tokens needing blank between |}

{ forward declarations for all procedures and functions }

forward;

procedure srith;
rocedure ckformal(name: alfa; [ formal name | var found: boolesn);
Toruard;

3
332
333
334
335
336
337

procedure cksacro(name: atfs; { macro name } var found: boolesn);

procedure close; forward;
rocedure convrt;  forward;
procedure convrti;  forward;
rocedure convrtr; forward;
rocedure convrts; forward;

procedure
B odetim,  foreards
P racedare
S rocedure

rocedure doinclude; forvard;
rocedure doindex; forward;
rocedure dooptions; forward;
procedure dosysmac(d: drng); { which macro } forvard;
rocedure error{err: errmsg); forward;
rocedure evalfns(f: fns); forward;
rocedure forward;
rocedur forward;
rocedure forward;
rocedure evalcos; forward;
roc re evalexp; forward;
rocedure evatlen; forvard;
rocedure evalln; forward;
roc e evalodd; forward;
rocedure evalord; forvard;
rocedure evalrou; forvard;
rocedure evalsin; forward;
rocedure evalsqr; forvard;
ToC evalste; forwared;
rocedure evaltru; forward;
rocedure experrorerr: errusg); forward;
rocedure expression; forward;
procedure factor; forward;
rocedure findcon(name: alfs;
{ name of const |} var found: boolesn); forward;
rocedure flookup(name: alfs;
{ function name |} var fun: fns;
function code |} var found: boolesn); forward;
rocedure flush; Forward;
rocedure forcereal; forward;
rocedure getactuals(f: fptr;
pointer to next formal } var act: aptr); { pointer to actuml }
forward;
rocedure getbody; forwacd;
procedure getbsu; forward;
rocedure getcdpars; forward;
rocedure getch; forward;
procedure getformals(var f: fptr); forward;
ocedure getkey; forward;
ocedure getline; forward;
‘ocedure getpars; forvard;
rocedure gettok; forward;
rocedure initialize; forward;
grocmrt need(l: pgrng); forward;
rocedure nevpg; forward;
rocedure openiname: alfa); { file nme to open } forvard;
grocmre over(i: integer;

current value |} maxval: integer); { max value } forvard;

rocedure parse(top: crng; )
(L‘EEETpon entry } tok: lex); { token causing recursion }
forvard;

rocedure parsecon; forvard;

rocedure parsescon;  forward;
gro_c:%g pushback; forvard;

rocedure puttok; forward;

rocedure relate; forward;

rocedure scanheader; forward;

rocedure ters; forward;

rocedure terminate; forvard;

rocedure tisedate; forward;

smcﬂm typesmatch: boolean; forwsrd;
TunctTon typeis(c: cset): boolesn; forward;
grocmu varisble; forward;

{ procedures and functions }

i

i

i

<
Ll

i

ol

R

:

ERASAES }

arith - recognize arithmetic ops in expression }

ARARREEN

procedure arith;

var

o~ gt

op: lex;

if (lextyp in (lexor, lexadd, Lexsubl) and (not typeis(lterrl))

t
1_7 ((lextyp = Llexor) and typeis(ltbl])) or ((lLextyp in [lexadd,
Lexsubl) and typeis(ltin, trel))
then
begin
over(ctop, maxcons);
while lextyp in [lexor, Lexadd, lexsubl do
begin
ctop = ctop + 1; op :* Lextyp; getkey; term;
if (op = Lexor) snd typeis([tbld)
then with ctablctop - 1] do cb :* cb or ctablctopl.cd

else
¥ (op in Clexadd, Lexsubl) and typeis(ltin, trel)
then

“with ctablctop - 13 do
if (ctyp = tin) and (ctablctopl.ctyp = tin)
then
case op of
“lexadd: ci := ci + ctablctopl.ci;
Lexsub: ¢4 := ¢i - ctabletopl.ci
od { case }
else
in




PASCAL

L]
&2
443

445

NEWS #17 MARCH, 1980

forcereal;
case op of
Texadd: cr := ¢r + ctabletopl.cr;
Llexsub: cr := cr ~ ctablctopl.cr
end | case }

else
3T ctablctopl.ctyp < terr  then experror(erarith);
ctop := ctop - 1
end

ond
end { arith };

l SRR RS )

{ ckformal - if reference to formal, push on call stack }
( 3221 )

procedure ckformal { name:alfa; var found:boolean };

var
- a: aptr;
begin

ound := faise;

if atop > 0

Then

in
a := astack(mtopl.margs;
while (a © nil) and (not found) do
in
with a° do
1f afors = nase
then
begin
ound := true; pushback; etop := stop + 1;
with sstack(atop] do
in
margs :* nil; enext := afirst; mlast := alast;

a 1= 2 .anext
end;
if Tfound  then gettok

end T ckformal };
( SEANRERY }
{ clmacro - if macro called, push onto stack |}
{ FEEATARE

procedure ckmacro { name:alfa; var found:boolean };

var
e d: drng { index to defined macroe };

b_oﬂin

:s dtop; defs(0].dname := name;
while defsldl.dname < name do d :=d - 1;
iTd>0
then

T be
_’%_nmd = true;

if d <= nsysmac  then dosysmac(d?
olse
Egin
over{(atop, saxcalls);
with sstackimtop + 1], defsldl do
in

sargs :* nil; snext := dfirst; slast := dlast;
matop := atop; while ch = blank do getch;
if ch = lparen
then
Egin
getch; getactuais(dargs, margs);
i! ch < rparen then error(erckrpar)

else error(ercklpar)
end;
stop := atop + 1;  getch
and;
gettok

end
end T cimacro };

{ weexsnew }

{ close - close the current file + restore old one }
( AAERRERR )

procedure close;
begin ftop := ftop - 1 end { close };

( ARARRRAN ]

{ comvrt - convert constant to pascal input format }
{ ANRRARRN }

procedure convrt;

var
i: integer;
¢: char;
sign: boolean;
begin

vith ctablctopl do
case ctyp of

tin:
begin
11 abs(ci) >= maxint
then begin i :* maxint; error(erconvert) end

else i :* ¢i;
FFT <0 then begin sign := true; i := abs(i) end

351
552
553
554
555
556
§57
558
359
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

618

624

642
643
644
645
646
647

649
650
651
652
653
654
655

657
658
659
660

else sign := false;
Lexten := (;
white i > 0 do

in

exien :» Lexlen

+1;

PAGE 32

texstrltexlen) := chr(ord(*0') + (i aod 10));

ism i div 10
end;
it sign then
“begin Texlen := Le:

for i := 1 to(lexlen

begin

¢ := lexstr(i];
Lexstrilexlen -
end;
uTy; := Llexint
end;
terr:;
tot:
begin

xten + 1;  lexstrilexlen] := minus end;

div ) go

Lexstrli) := Llexstr
i+1]:=¢

lexlen := 10; unpack(co, lexstr, 1);
while Lexstrliexlen] = biank do lexlen := lexlen - 1

end;
teche
begin

extyp :* lexst; lexten := 1;  lexstr{

for i := 0 to clen ~
in
exien := Lexlen

1do

+1;

lexstrllexien] := cstrlcfirst ¢+ i];
if Lexstrflexlen] = quote then
begin lexien := Lexien ¢+ T;~  Lexstrllexlen] := quote

end
end;
texlen := Lexlen ¢+ 1
end;
.
begin
Lextyp := lexalpha;
it cb

;  lexstrilexlen) :=

then begin unpack('TRUE', Lexstr, 1); L
else begin unpack('FALSE®, lexstr, 1;

1] H -
tres
in

Clexten - i + 11;

Lextyp :» Lexalphs;

1] := quote;

quote

exlen := & end
lexien := 5 end

rewrite(dummy); write(dummy, cr, blank); reset(dummy);
do get(dummy); lexlen := 0;
e dusay” © blank do

while dummy” = blank

in
exten := Lexlen
get (dusay)
end;
Lextyp := texreal
end
end T case }

end T comwrt };

( ARNARAAL )

+ 1; lexstrilexlen] := dummy”;

{ convrti - convert integer token to binary fom }

‘ E2 i st 1 )

procedure convrti;

var
iz integer;
L: larng;
in

with ctablctop) do
begin

ctyp := tin; ci = 0;
for L := 1 to lexlen do

ci :® 10 * ¢i + ord(lexstrCl]) - ord(zero)

end
end T comvrti };

‘ ARANEANE )

{ convrtr - convert real token to binary form }

( R REANED )
procedure convrtr;

var
i: lnrng;

begin

rewrite(dumey); for i := 1 to lexlen do write(dummy, lexstrlil);

write(dusmy, blank); reset

with ctablctopl do begin ctyp := tre;

end T comvrtr };

{ anesawas )

(dummy) ;

{ corwrts - convert quoted string to const string }

{ R2 2 b lasd )

procedure convrts;

yar
L: larng;
begin
with ctablctopl do
begin

ctyp ;= tch; clen = 0

begin
clen := clen + 1;
cstop := cstop + 1;
if texstrll] = quote
[

end
end T comvrts };

read(dusmy, cr) end

;  cfirst = cstop ¢ 1;
L := 2 { skip leading quote };
while L <= (Lexlen - 1) do

over(cstop, maxcstr);

cstricstop] := texstrll];

then L := L 42

else L 3= L + 1



PASCAL NEWS #17

661
662
663

( Friiiitig }
docodeif - process Scodeif{ expe., code} |}

( BRRBRANR )

grocodurt docodeif;

var
- »: dsrng { save area for atop upnn entry };
ctrs 1nngcr { left paren count };

begin
getkey; over(ctop, saxcons); ctop = ctop + 1;  expression;
ctop = ctop = 1; a := atop;
if lutyp <© lexcommsa then experror{ercodcom)

e
1th ctablctop + 1 do
¥ ctyp = tbl

over(mtop, aaxcatls);
with astackimtop + 1] do

Eegin
margs := nil; melast := atop = 1; getcdpars;

mnext := atop; matop := a;
and;
stop := atop + 1; getch

i

in
ctr = §;
while ctr > 0 do

begin
1'7 ch = newline
Then

begin
_1_'7 (mtop = 0) and (ftop = 0) and eof(fstack(0].
ffile)

then begin error{ercodeof); goto 1 end

¢

C
else
¥ ch = rparen  then ctr := ctr - 1
else if ch = lparen  then ctr := ctr + 1;
getch
end

end
else 3T ctyy < terr then error(ercodtype)
ond { “oOouEif ). h—

{ soasaner }
{ dodefine - process $define(name(formal parms),string) 1}
( ANAARRNE )

procedure dodefine;

in
gettok;
if lextyp <> lexalphs then error(erdefname)
else
begin

over(dtop, maxdefs); dtop := dtop + 1;
with defsCdtop) do

begin
Lutr[o] := dollar; pack(lexstr, 0, dname);
dfirst := dstop + 1; dlast := dstop; gettok;
if Lextyp = lexlparen
then in gettok; getformals(dargs); gettok end
else dargs := nil

extyp < lexcomsa
Then in error(erdefcom); dtop :* dtop - 1 end
else getbody -
ond

ond T dodefine };

{ aRktbten )

{ doinclude - process Sinclude(file) }

{ senensen

procedure doinclude;

var
name: alfa;

begin
getbsu;
< if lextyp © lexalpha then error{erincname)
else
begin
pack(lexstr, 1, name) { check file name here if desired };
getkey; if Lextyp © lexrparen then error{erincrpar);
open(name)™

end
end T doinclude };
{ el iiszl) )
doindex - process $index(expression) |}
( 232224 )
procedure doindex;

var

i: lnrng;

begin
over(ctop, maxcons); ctop := ctop + 1; getkey;

if lextyp = Lexrparen

then with ctabCctop) do begin ctyp := tin; ci :* 0 end

else expression;

extyp < lexrparen then error{erindrpar)

‘else ,
n

MARCH, 1980

m
772
ms
774
75
776
m
778

780

854
855
356
857
858
859

pushback;
with ctablctopl do

PAGE

not (ctyp in (terr, tinl)  then error(erindxtyp)

else
iT ctyp = tin

then
begin
index :* index + 1; ci :® ¢f

+ index; convrt;

over(stop, saxcalls); wmtop := atop + 1;

with sstack(mtopl do
in

sargs := nil; mnext :® atop;

matop :* atop;

for i := Lexlen downto 1 do

begin
snext = mnext - 1;

defstrianext] := Lexstr(i)

.M.
ge't':'h"
end
end
end;
ctop := ctop - 1
end { doindex }:

( AR Ahkkh }

dooptions - process $options(...) 1}

( ket ktd }

procedure dooptions;

var
iz integer;

begin
gettok;

uh'lle not (lextyp in [lexrparen, Lexeotl) do

egm
lextyp = Lexalpha

then
TIT Lexstef11 in C'RY, 'PY, 'NY, 'L', 'E')
Then
case lexstr(1] of
"'!'Fu’ [I"g -
in -
while not (ch in ['0* .. '9', *)'D) do getch;
13 U;
while ch in (0’ .. '9'] do
“hegin i :® 10 * i + ord(ch) - ord('0");
if fn'ncel <= i) and (i <= maxcol) then
_case Lexstr(1] of
*: prcopt := i;
'l‘: rcopt = §
end { case
'u;rﬁ,

if Lexien >= 3 then

1f lexstrC33 = L'  then Llistopt := false

else if l-utr[S] = /g7 then expropt := false;

1L Listopt := true;
‘E': expropt :* true

end
else error(eropttype)

else if Lextyp <> lexcomma then error(eropttype);

gettok
end
end T dooptions };

{ i 2204 }

~ perform proper system sacro }

( Ra i il

procedure dosysmac { d:drmg };

begin
gettok;

it lextyp <> lexlparen then error{ersysipar)

else
case d of
sysinc: doinclude;
syscodeif: docodeif;
sysindex: doindex;
sysdefine: dodefine;
sysoption: dooptions

end
end T dosyamac };

[ a2 2t 2] )

error - write out error message }
( ARk AAARE )

procedure error { err:ermmsg };

var
i: lnrng;

begin
need(2) { make sure message fits on page
if Listopt
Then

" begin

b

alast := atop - 1;

getch end;

write(space, errflag); for i := 1 to next - 1 do write(blank);

writeln{arrow)
end

else writeln(' AT LINE:', Line: 2, * (pascal line:!, pline: 2,

— :
writeln(spece, errprefix, err); nerrors
end { error };

( TeRRRAAE )

{ evalins - evaluate a builtin function }
( e id]) }

procedure evalfns { f:fns };

:= nerrors + 1

l)l);

33



PASCAL NEWS #17

in

case f of

Tabs:
fatn:
fehr:
fcos:
fexp:
flen:

end {

evalabs;
evalatn;
svalchr;
evalcos;

evalodd;
evalord;
evalrou {
evalsin;
evalsqr;
evatstr {
evaltru {

cage }

end | evalfns };

{ ARRRREAN }

length of a string };

roud };

string of - make integer a string };
truncate |}

{ evalabs - evaluate the abs builtin function }

{ ARANEAAN )

procedure evalabs;

e,
with ctablctopl do

I typeis(ltre, tinl)

Then case ctyp of
Tn: ci
tre: cr

t

else experror
end T evalabs }

( hAARARS }

:= 3bs(ci);
:= abslcr)

{erabstype)
;

{ evalatn - evaluate the arctan builtin function }

( Ri sttt 1] )

procedure evalatn;

m
[] ctablctopl do

typeis(Ctre, tind)
Then ’

case ctyp of

tTn: begln cr := arctan(ci);

ctyp :* tre end;

tre: cr := arctan(cr)

ond { case }

else experror{eratntype)
ond T evalatn };

( enkdhid }

{ evalchr - evaluate the chr builtin function }

( HEREARRY )

procedure evalchr;

var

begin
with ctablctopl do

: integer;

ctyp *= tin

Then

b_:qin
1= ¢i; ctyp := tch; over(cstop, atop);

cstop := cstop ¢ 1;

clen :% 1;  cstrlcstopd := chr(i);

cfirst := cstop

and

{ SERBANER l

’

el3¢ experror{erchriype)
alchr } 4

{ evalcos - evaluate the cosine builtin function }

l AARANANE }

procedure evalcos;

begin
with ctablctop) do

typeis(Ltre, tinl)
then

case ctyp of

tin: begln cr := cos(ci);

ctyp := tre end;

tres cr := cos(cr)
ond { case }
else experror{ercostype)
end T evalcos };

( et it gl }

ev - evaluate the exp builtin function |}
{ Ea i 22244 )

procedure evalexp;

begin

with ctablctopl do

_i_? typeis(ltre, tinl)

then

case ctyp of

|

tin: begin cr := explci);

ctyp := tre end;

tre: cr := explcr)
end { case }

else experror(erextype)

end T evalexp };

( Rid el i) )

{ evallen - evaluate the length builtin function }

( ARARENRR )

procedure evallen;

var

i: integer;

MARCH, 1980

and

in

with ctablctopl do
i1 ctyp = teh
Then

PAGE 34

b_t?'in
:® clen; cstop := cfirst - 1; ctyp := tin; i := §
end

eS¢ experror(erlentype)
eval }:

{ wwendees |

{

evalln ~ evaluate the ln builtin function }

{ AREEARED )

procedure evalin;

begin

with ctablctopl do
if typeis({tre, tind)
then

case ctyp of
tin: begin cr := ln(ci);
tre: cr := Llnlcr)
end [ case }
else experror{erlntype)

!_"_‘;‘ evalln };

{ AhEARAAS

evalodd - evaluate the odd builtin function }

( RAARRENE }

procedure evalodd;

and

var

i: integer;

begin

with ctablctop] do
lﬁ‘ ctyp = tin
then begin i := ci; ctyp = tbl;
e[se experror(eroddtype)
evavodd

H

{ RRAARAR )

{

evalord - evaluate the ord builtin function }

( it Akhad }

procedure evalord;

var

c: char;

begin

vith ctablctop) do
1f ctyp = tch
Then

t
1T clen = 1
then in ¢ := cstrlcfirst); ctyp := tin;

else experror(erordarg)
else experror(erordtype)

end T evalord );

{ AARREANR }

{

evalrou - evaluate the round builtin function }

( ARkERthy )

procedure evalrou;

var

r: real;

in
with ctablctop] do
ctyp = tre
then inr 2= cr;  ctyp := tin;
else experro;(errwtm)

end T evalrou };

{ AR )

{

evalgin ~ evaluate the sin builtin function }

{ AERERERE )

procedure evalsin;

in
with ctablctop) do
typeis(ltre, tind)
then
case ctyp of
tin: begin cr := sin(ci);
tre: cr := sinler)
end { case |
else experror(ersintype)

end T evalsin };

{ AARARENN )

{

evalux - evaluate the sgr builtin function }

{ seasesee |

procedure evalsaqr;

end

begin

with ctablctopl do
_W typeis(ltre, tind)
then
case ctyp of
tin: ci := sqr(ci);
tre: cr := saqrler)
end { case |}
else experror(ersqrtype)

T evalsx );

{ R e i 22t ] )

evalstr - evaluate the stringof builtin function

[ SRAREADY )

procedure evalstr;

ctyp :* tre end;

ctyp := tre end;

¢b :* odd(i) end

ci := ord(c) end

ci = round(r) end



PASCAL NEWS #17 MARCH, 1980 PAGE 35

1101 1211 if Lextyp = Lexlparen
1102 var 1212 Then
1103 i: integer; 1213 begin
1104 c: char; 1214 getkey;  expression;
- 1105 sgn: boolean; 1215 if not typeis({terrl) then
1106 1216 1T Lextyp <> Lexrparen  then experror(erfacrpar)
1107 begin 117 else getkey
1108 with ctablctopl do 1218 end
1109 T ctyp © tin  then experror(erstrtype) 1219 else variable
1110 else — 1220 end T factor };
RERE] “begin 1220 T
1112 1 1% ci; 1222 { wemawasn |
1113 if i < 0 then begin sgn := true; i := abs(i) end 1223 { findoon - find previously defined constant |}
1114 else sgn :5 Talse; 12246 { wenwrene
1115 over(cstop, atop); cstop :* cstop ¢ 1;  ctyp :% tch; 1225 procedure findcon { name:alfa; var found:boolean };
1116 cfirst := cstop; 1226
1117 it i =0 then begin clen := 1; cstricstop] := zero end 1227 var
1118 else 1228 ¢: crng;
1119 begin 1229 i: integer;
1120 clen := 0; 1230
1121 while i > 0 do 1231 begi
1122 in 1232 ¢ := cvalid;  ctabl0l.cname := name;
123 cstricstop) := chrlord(zero) + (i sod 10)); 1233 white ctablcl.cnase <> name do ¢ :=x ¢ - 1;
1124 1 := i div 10; over(cstop, atop); 1234 ife>0
1128 cstop := cstop + 1; clen 1% clen + 1 1235 Then
1126 end; 1236 ngn
1127 if sgn  then cstricstop) := einus 1237 ctablctop) := ctablel;
1128 else cstop := cstop - 1; 1238 with ctablctop) do
1129 for i := 0 tolclen = 1) div 2 do 1239 1T ctyp = tch
1130 “begin 1240 then
13N ¢ := estrli + cfirstl; 1241 begin
1132 cstrli ¢ cfirstd := cstricfirst + clen - i - 1]; 1242 over(cstop + cien, maxcstr); cfirst := cstop ¢ 1;
1133 cstrlcfirst + clen = i - 1] := ¢ 1243 for i := 0 to clen - 1 do
1134 end 1244 T hegin
1135 end 1245 cstop := cstop + 1;
136 end 1246 cstricstopl := cstrictablcl.cfirst ¢ il
1137 end { “evalstr }; 1247 end
1138 1248 end;
1139 { wherwenn ) 1249 found := true
1140 { evaltru - evaluate trunc builtin function } 1250 end
1941 { veeewwer ) ] 1251  end T findcon };
1142 procedure evaltry; 1252
1143 e— 1253 ( wEERRARE | ..
1144 - var 1254 { flookup - lookup function nmme and return type code }
1148 T r: reat; 1255 ( awwannnr |
1146 1256 procedure flookup { name:alfa; var fun: fns; var found:boolean };
1147 begin 1257
1148 with ctablctopl do 1258 var
1149 T 3T ctyp = tre 1289 T f: fnrng;
1150 Then begin r := cr;  ctyp := tin;  ci := trunc(r) end 1260
1151 else experror(ertrutype) 1261 begin
1152 _ch_{ evaltru }; 1262 !unct[OJ.fnnn = name; f := maxfns;
1153 1263 while funct(fl.frnme < nase do f := f - 1;
1154 [ weadeaan | 1264 T f =0 then found := false
1155 { experror - print error for expression and flush } 1265 else in Found := true; fun := functifl.fntyp end
11“ ( L2 ] } 12“ ._.na ‘ lm };
1157  procedure experror { err:errmsg }; 1267
1158 1268 { westnsnr |
1159 in error(err); ctablctopl.ctyp := terr;  flush 1269 { flush - flush to semicolon }
1160 end experror }; 152 { nc:;.n  ush
1161 1 procedure flush;
1162 | thwawnne | 1272
1163 { expression - parse expression; put value in ctablctop] } 1273 in while not (lextyp in (lexeof, Lexsemil) do ¢ :key
1166 { twaswear ) 1276 @ flush |;
1165  procedure expression; 1275 -
1166 1276 { swsanees }
1167 in 1277 { forcereal - force top two constants on stack to real }
1168 relate; 1278 { tandtann |
1169 if typeis(ltehl) 1279  procedure forcereal;
1170 then 1280
"Mn Egin 1281 var
1172 over{ctop, maxcons); ctop := ctop + 1; 1282 i: integer;
1173 while Lextyp in [lexst, lexalphal do 1283
1174 in - - 1284 in
175 relate; 1285 with ctablctopl do .
1176 if typeis(Ltchl) 1286 if ctyp = tin = then begin i :=® ci; ctyp := tre; cr := | end;
" Then with ctablctop = 1] do clen := clen + ctablctopl.clen 1287 with ctablctop - 17 do
178 else ¥ not typeis(Cterrd)  then experror(erexptype) 1288 Tif ctyp = tin  then begin 1 := ¢i; ctyp := tre; cr := § end
1179 Lli_’,'_. 1289 ﬂ_r forcereal };~
1180 ctop = ctop - 1; 1290
18 ond 1291 { eansnnan )
18 od | expression }; 1292 ( getactuals - get actual parameters for macro call }
1183 1293 { edwndaan }
1184 [ *eanwnes ) 1294  procedure getactuals { f:fptr; var act:aptr };
1185 { factor - recognize factor part of expression } 1295
1186 { *xwasaan | 1296 begi
1187 procedure factor; 1297 it =il
L S — 1298 then { “if no formals, then no actuals }
1189 var 1299 else
1190 op: lex; 1300 begin
1191 ‘ 1301 neulact);
1192 begin 1302 with act™, % do
1193 if lextyp in [lexnot, lexsubl 1303 begin
119 Then 1304 aform := fname; alast := atop - 1; getparm;
1195 begin 1305 afirst := atop; if ch = comma  then getch;
1196 op := lextyp; getkey; factor; 1306 getactuals(fnext, anext)
197 with ctablctopl do 1307 end
1198 _1'_7 typeis([tblﬁﬂ (op = lexnot)  then cb :* not cb 1308 end;
1199 else 1309  end T getactuals };
1200 7T typeis({tin, trel) and (op = lexsub) 1310
1201 Then - 1311 { wwsamans }
1202 case ctyp of 1312 { getbody ~ get the body of a macro }
1203 tin: ci = - ¢i; 1313 [ sxwadnds )
1204 tre: cf := - ¢r 1314  procedure getbody;
1205 end { case } 1315
1206 else 1316 var
1207 T 3T ctyp © terr 1317 ctr: integer { left parenthesis counter };
1208 Then begin ctyp := terr;  experror(erfactype) end 1318

1209 end 1319 begin
1210 else 1320 ¥ ch = rparen




PASCAL NENS #17

MARCH, 1980 PAGE 36
1321 then 1431 end
1322 —uith defsldtop) do 1432 end T getformals };
1323 in getch; ~dlast := dstop; dfirst := dstop + 1 end 1433
1324 else 1434 ( sawattes |
1325 in 1435 { getkey - get token and classify language keywords }
1326 ctr = 1; 1436 { seewress }
1327 with defs{dtopl do 1437  procedure getkey;
1328 in 1438
1329 while ctr > 0 do 1439 var
1330 Begin 1440 neme: alfa { name of constant };
1331 over(dstop, atop); dstop := dstop + 1; 1441 " k: keng { pointer to keywords };
1332 defstridstopl := ch; dlast := dstop; 1442
1333 if ch = rparen  then ctr := ctr - 1 1443 begin
1334 *Lse 1444 getbsu;
1335 77 ch = lparen then ctr := ctr + 1 1445 if lextyp = lexalpha
1336 else 1446 - then
1337 ¥ (ch = newline) and (ftop = 0) and eof(fstack[0], 1447 Eegin
1338  tfile) - - 1448 pack(lexstr, 1, name); keywd[Ol.kname := name; k :* maxkeys;
1339 then begin error(erbodyeof); goto 1 end; 1449 while keywd(kl.kname <> nase do k := k = 1;
1340 getc 1450 Tk >0 then textyp := keywdlkl.kiex
1341 end; 1451 end
1342 deTstridlast] := blank { replace trailing ")* } 1452 end T getkey };
1343 end 1453
13“ .M 1‘5‘ { KAk ARRR )
1345 end T getbody }; 1455 { getline - place input line in linline; set next, last }
13‘6 1‘56 ( St eR }
1347 { #weraess | 1457  procedure getline;
1348 getbsu - get basic syntatic unit, subst. macro calls } 1458
1“9 [ AR AARER } 1‘59 V_.L
1350 procedure getbsu; 1460 incol: lnrng;
1351 1461 iz integer;
1352 var 1462
1353 name: alfa; 1463 begin
1354 found: boolean; 1464 while eof(fstack[ftopl.ffile) and (ftop > 0) do close;
1355 1465 ___W eof (fstack[ftopl.ffile)
1356 begin 1466 then begin next :x 1; last := 0; inlineCnext] := nevline end
1357 gettok; 1467 else
1358 while lextyp = Lexmac do 1468 with fstackiftopl do
1359 in 1469 begin
1360 pack(lexstr, 1, name); ckformal(name, found); 1470 hm 1= Line + 1; fline :3 fline + 1; dncol := 1;
1361 if not found then 1471 if listopt
1362 begin - 1472 then
1363 ckmacro(name, found); 1473 begin T
1364 if not found then begin error(ermacdefn); gettok end 1474 if Linectr >= pagesize
1365 end; — - 1475 then begin Linectr := 0; newpy end;
1366 end 1476 Tinectr := Linectr + 1; write(space, Line: 4, ' ');
1367 end T getbeu }; 477 for i := 1 to 7 do write(fname(il);
1368 - 1478 write(fline: S, pline: 8, ' ');
1369 { weawanas } 1479 while (not eoln(ffile)) and (incol <= rcopt) and (ffile”
1370 tcdparm - get "codeif® code and save it } 1480 = blank) do
1371 { sndnnsas | 1481 begin get(ffile); write(blank); incol := incol + 1
1372  procedure getcdpars; 1482 evs\g-
1373 1483 next = incol;
13264 var 1484 inlineCnext] := newline { in case of empty line };
1375 ctr: integer; 1485 vhile (not eoln(ffile)) and (incol <= rcopt) do
1376 d: dsrng; 1486 Begin
1377 1487 intinelincold := tfile"; incol := incol + 1;
1378 begin 1488 write(ffile®); get(ffile)
1379 d := dstop; ctr := 0; 1489 end;
1380 while (ctr > 0) or (ch < rparen) do 1490 Last := incol - 1;
1381 n - - 1491 if not eoln(ffile) then
1382 over’ , atop); d :3d+ 1; defstr(d) := ch; 1492 n
1383 if ch = (paren then ctr := ctr + 1 1493 write(break);
1384 else if ch = rparen  then ctr := ctr - 1; 1494 while not eoln(ffile) and (incol < maxcol) do
1385 geteh 1495 Begin write(ffile®);  get(ffile) end
1386 end; 1496 end;
1387 if d > dstop then 1497 writeln
1388 begin 1498 end
1389 over(d, atop); d :=d + 1; defstrld] := blank; 1499 else
1390 while d > dstop do 1500 begin
139 Egin 1501 while (not eoln(ffile)) and (incol <= rcopt) and (ffile”
1392 atop := atop - 1; defstrlatop] := defstrld); d :=d -1 1502 = blank)
1393 end 1503 begin get(FFile); incol := incol + 1 end;
1394 end 1504 next := incol;
1395 end T getcdparm }; 1505 inlinelnext] :» newline { in case of line };
1396 1506 while (not eoln(ffile)) and (incol <= rcopt) do
1397 { setmaden |} 1507 in
1398 { getch - get next character and place in ch } 1508 inlinelincol] := ffile”; incol := incol + 1;
1399 { swesnean } 1509 get(ffile)
1400 procedure getch; 1510 end;
1401 1511 tast += incol - 1
1402 begin 1512 end;
1403 :_IY mtop > 0 then 1513 readin(ffile);
1404 while (mstack(stopl.mnext > mstack(mtopl.mlast) and (mtop > 0) do 1514 if last >= next
1405 Stgin atop := sstackmtopl.matop; mtop := atop - 1; end; 1515 Then begin Last := last + 1; intine(last) := newline end
1606 it mtop > 0 1516 3_._"3 -
1407 then 1517 end { getline };
1408 with astack(etopl do 1518
1409 5egin ch := defstrimnext]; mnext := mnext + 1 end 1519 ([ sxanssen
1410 else 1520 { getparm - get an actual parm and save }
14N begin 1521 [ srewswas
1412 ¥ next > last then getline; <ch := inlinelnext]; 1522 procedure getparm;
1413 next := next + 1 1523 -
1414 end 1524 var
1415 end T getch }7 1525 ctr: integer;
1416 1526 d: dsrng;
1817 [ swensans | 1527
1418 { getformals - get formal parameter names } 1528 begin
1419 [ siasenrn 1529 d :* dstop; ctr :x0;
1420 procedure getformals [ var f:fptr }; 1530 while (ctr > 0) or not (ch in [comma, rparen]) do
1421 1531 begin
1422 begin 1532 over{(d, atop); d :=d+ 1; defstrld) := ch;
1423 1f lextyp <> lexalpha then f := nil 1533 if ch = tparen then ctr := ctr + 1
1424 else 1534 else if ch = rparen  then ctr :3 ctr - 1;
1425 begin 1535 getch
1426 new(f); texstr(0) := dollar; pack(lexstr, 0, f".fname); 1536 end;
127 gettok: 1537 ifdS dstop
1428 if Lextyp = Lexcomsa 1538 then
1429 IRen begin gettok;  getformals(f”.fnext) end 1539 begin
1430 else T .fnext := nil 1540 over(d, atop); d :=d+ 1; defstrld] := blank;




PASCAL NEWS #17

1541
1542
1543
1544
1545

T 1546

1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558

1639
1641

1643
1644
1645

1647
1648
1649
1650

while
in

a
end
end

MARCH, 1980

d> dltoo do
{ move pams to right }
defstriatop) := defstr(d];

top := atop - 1; dz=d-1

ed T getpam };

( ARNARAES ]

ttok -~ get a token; set lexstr, lexlen, lextyp }

ge
ARSARERE

procedure gettok;

var

borin
exlen :»

white lex
in

Le ch = blank do getch;

i: integer;
num: integer { value of octal number };

0;
Len = 0 do

lexten := 1; lextyp :* lexother;

[oxs 1] := ch;

case ch of

ney

if (ftop = 0)

Line:
and eof (fstack(ftopl.ffile)

then Lextyp := Lexeof

c[st in get:h- Lexien := 0 end;
33’vr ne, tgr, tEY, -5-1-1“4’ qr, 0, W, o,
l.l l"l lol l I, 'Q" 'R" lsl' 'Tl' lul' le' lvl' lxl'
l'l lll.
hegin
getch; lextyv := lexalpha;

7
-u‘l"_|1 .,

vhile ch in C*A* .. '2°, '0' .. '9'1 do
begin
exlen :* Lexlen + 1;  lexstrliexlen] :s ch; getch
end;
if Texlen > 10 then Lexlen := 10;
For i :s lexten + T to 10 do Lexstr(i) := blank

120, '3, %Y, 'S, Y60, U7, '8Y, 90

begin

getch; Llextyp
while ch in C'0° ..
in
Lexlen := lexlen + 1;
end;
if ch = Lletterb
then ( \
begin octal
geétch; nua := 0;
for i := 1 to lexlen do
T 1 lexsteTT] in 07 .. '7']
'ﬁbn num := § ¢ num + ord(lexstr(il) - ord(zero)
se begin num :* 8 + num;  error(eroctdig) end;
overz ctop, maxcons); ctop := ctop + 1;
with ctablctop] do begin ctyp := tin;
convry; ctop := ctop - 1
end
else

begin " od
1T ch = peri
then
Szgin
getch;
if ch = period
else
begin
lextyp % Llexreal; {exlen := lexlen + %;
texstrilexlen] := period;
while ch in C'0' .. '9'] do
in
exlen := lexien + 1;
Lexstrllexlen] := ch;

= lexint;
‘9" do

Lexstrilexlenl := ch; getch

¢i 1= nua end;

then pushback

getch

end

end
if ch = lettere
then
begin
extyp := lexreal;
Lexstr{texlenl := ch;

Llexten := lexien + 1;
getch;

llbch in [plus, minus] then
egin
‘—%?;Len := lexlen + 1;  lexstrilexlen) := ch;
getch
end;
while ch in ('0' .. '9'] do
in
exlen := lexlen + 1; texstrlliexlen] := ch;
getch
end
end
lextyp := lexadd; getch end;
lextyp := Llexsub; getch end;
: Lextyp := lexmuly; getch end;
: Begin lextyp := lexdvd; getch end;
getch;
if ¢ch < star then lextyp := Lexlparen
else
getch;
if ch = dotlar
then

in
exten := 3;

r:gelt

unpack (' (+$*, lexstr, 1);

1651
1652
1653

173
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760

PAGE 37

I!!!!Sh
getch; Llexlen := Lexten ¢+ 1;

Lexstrllexienl := ch
until ch = star;
getch;  Lexlen := lexien ¢+ 1;
Lexstrllexlend := ch
until ch = rparen;
gctcﬁ

Lexien := 0;

rsg;ut while ch <> star do getch; getch
until ch = rpsren;
getch
end
cnd
' begin Lextyp := lexrparen; getch end;
Isl.
begin
getch;
if not (ch in (A .. '2'D)
Then b begin ‘error(ermacname);  lexien := 0 od
else
Eegin
lextyp :* lexmac;
while ch in C*A' ., ‘2%, '0° .. '9'] do
in
Lexlen := Lexten + 1; Lexstrllexien) := ch;
getch
M-
f Texlen > 10 then lexien := 10;
T_r i == Lexlen + T to 10 do texstr{i) :=» blank
end
o L h end;
'=7: begin lextyp :* lexeq;  getc ;
A g? Lextyp :*= lexcomma; getch end;
LN '
begin
getch;

it ch = period then
“begin lexstr{ZT := period;
I'\d'
ll"l:
begin { extract string including all quotes }
exlen := 0;
repeat
over(lexien, maxline);
Lexstrliexlen] := ch;

Lexlen := 2; getch end

Lexlen := lexten + 1;

at
getch;
if ch = newline then
begin
error(erlongstr); pushback;
ch := quote { supply missing quote }

end;
over{lexien, maxline); Lexlen := Lexlen + 1;
texstrllexilen] := ch
until texstr(lexien] =
getch
until ch <> gquote;
Textyp := lexst
':fgd.
begin
getch;
if ch = equal
—Fin begin lexien := 2;

W
hcfin
extyp := lexne;
getch
end;
I rad
begin
Lextyp := lexor;
getch .

quote;

Lexstr{2] := squal;

unpack ('O’ Lexstr, 1);

unpack("0R', Lexstr, 1);

lextyp := Lexand; unpack('AND', Lexstr, 1);

= 3; getch

if ch = equal
then
begin
lexlen := 2;

texstr(2] := equal;

= greater

begin
Lexlen := 2; Lexstr{2] := greaster;
Lextyp := lexne; getch
end
else lextyp := Llexlt

beg1n
getch;

\' :h = equal

T
hren 1= 2;

Llextyp := lexge;

getch end

lexlen := 2;

texlen := 2;

lextyp :2 Lexle;

Llexste(2) := equel;



PASCAL NEWS

1761

#17

getch
ond
else lextyp := lexgt

W
begin
thn

getch

:= lexle; unpack(’'<=s', Lexstr, 1); Lexien := 2;

:= lexge; unpack('>=', Llexstr, 1); lexlen := 2;

1% lexnot;  unpack('NOT',

1=3; getch

Lexstr, 1);

't in lextyp := lexsemi; getch end;
'i’.', '!I, L I A get;h { all oEher characters }
case } 7

( htttetd )
{ "iﬁ.%ue - perform all neceesary initialization )}

procedure initialize;

var
iz integer;

begin
timein := clock;

with ctab{1] do
in -

cname := ‘MM b ctyp := tch; clen :
cfirst := 1 3

end;
with ctab(2] do
in
cname := ‘DD i
cfirst := 4

ctyp := tch; clen := 2;

end;
with ctabl3] do
in -

cname := 'YY hH
cfirst =7

ctyp := tch; clen := 2;

u{Tctlbtb] do
in
cname := 'TIME bH
cfirst := 9

end;
with ctabls] do
in
cname := °‘DATE '
cfirst := 1

end;

with ctabl6) do
in cname := 'TRUE “

with ctab(7] do

“Begin cname := ‘FALSE '
ctabl8] do
in cname :® 'MAXINT A5
ctabl91 do
in cname = ‘MININT ' 1= tre; cr := - saxint end;

ctop :® ndefconst { number of p:edeﬂned constants };

cvalid := ndefconst;

timedste { put sm/dd/yyhh:mm:ss into cstr(l..16] };

{ keywords are in order of & ing freq y of

ctyp :® tch; clen := 8;

ctyp = tch; clen := 8;

ctyp := tbl; cb i= true end;

ctyp := tbl; cb :2 false end;

ctyp := tre; cr := saxint end;

with keywd[16] do in kname := ‘'AND 'z kiex :® lexand end;
wit F keywd(20] 30- n-kname := ‘BEGIN *;  kiex :® Lexbeg end;
keywd(14] Jo n kname :* 'CASE ‘;  klex := lexcas ;
ﬂtﬁ keywd(10) do n knsme := 'CONST ';  klex i Lexcon end:
uTth keywd(11] do n kname := 'DIV 7 klex :* Lexdiv end:
with keywd(21] do n kname := '"END ';  klex := lexend end;
with keywd( 83 do n kname := 'EXTERN ';  klex := Lextwd end;
with keywdl 23 do N kname := 'FORTRAN  ';  kiex := lexfwd end;
WIth keywd(15) do = 'FORWARD  °*;  klex := Lexfwd end;
WITK keywdL 9] do = 'FUNCTION ';  kiex iz Lexfun ¥nd;
with keywd( 4] do 1= "MAX ';  kbex :» Lexmax E
wTth keywdl 3] do 1= 'MCONST ; klex := Lexmcon end;
with keywd( S] do = 'MIN ';  klex := Lexmin end;
Wwith keywd( 61 do = 'MOD ';  kiex := Lexmod ﬁf
with keywd(17] o 1= 'NOT ' kiex := Lexnot end;
:1:5 ::;:E:;Z]l g €gin kname := 'OR ';  kiex := lexor end;
bcgm kname := 'PROCEDURE °'; kiex := lexproc end;
with keywd[13] do begin kname := 'RECORD 5 lex := lexrec end;
nth keywdl 13 do beg\n kname := ‘RUN A kiex := lexfwd end;
With keywd{ 7] do begin kname := 'TYPE ';  klex := Lextpe end;
With keywd[183 do In kname := 'VAR ';  kiex := Lexvar end;
wtop := 0; dstop := U; defs(sysincl. dna-e := "SINCLUDE ‘;
defslsysdefinel.dname := 'SDEFINE °*;
defs(sysindex].dname := 'SINDEX ';
defs(sysoption].dname := 'SOPTIONS °';
defs(syscodeif].dname := 'SCODEIF ‘; dtop := nsysmac;
atop := maxdefstr | acuals in rhs of dstr };
with functl 1] do n fnnme := 'ABS '; fntyp := fabs end;
with functl 21 3o n fnnme := 'ARCTAN  ';  fntyp := fatn end;
with functl 31 do m fonme ;= 'CHR ';  fntyp := fchr E
with funct( 41 E in forme := 'C0S ';  fntyp := fcos end;
with funct( 5] do begin fnrme := 'EXP: '; fntyp := fexp end;
with funct( 6] do begin fnname := 'LENGTH ';  fntyp := flen E
with functl 73 do begin fnnme := 'LN ';  fntyp := fin end;
with functl 83 Go begin fnrme := '00D ';  fntyp := fodd end;
with functl 91 E begin fnnme := 'ORD ' fntyp := ford end;
with functl{103 do begin fnnme := 'ROUND ' fntyp := frou end;

MARCH, 1980

1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
197
1972
1973
1974
1975
1976
1977
1978
1979
1980

PAGE 38

with funct(11] do in fnome fntyp := f:‘ln%;

With funct(12) do A fnome fntyp := faqr

With funct(13] do begin fnnme : totyp := fatr %

with funct(14] o n frrae = fntyp := ftru end;
ne := 0 { last mmber for listing };

pline :®= 1 { next, not last, pascal line number };

revrite(psource); rcopt := defrc; preopt := defprc;

Listopt := deflist;
expropt := defexpr { parse const expressions };

outpos := 0 { last output position used };

Lastlex := Llexeof { last token type output }; nerrors := 0;
index := 0;

confl := [lexalpha, Lexreal, Lexint, texand, Lexor, lexnot, lLemin,

Llexmax, lexdiv, lexmod, Lexbeg, lexcas, lexend, lexrec, lexfun,
lexproc, Lexcon, Lextpe, lexvarl;
linectr := pagesize { force newpage on listing };
ftop := - 1 { no open files }; open(inname);
tstack(0].fname := inlname
end { initialize };

{ ARty }

{ need - need 1 lines: start new page if necessary |}

( Rttt ] }

procedure need { l:pgmg };

? (Linectr + L) > pagesize then begin linectr := L; newpg end
_l'u Lim;:tr 1= linectr + L
;

{ wwntrans |

newpg - skip to a new page and print the heading }
(ﬁﬁtﬁ’tt}
procedure newpg;
begin
writein(newpage, titlel, titlela, dte: 9, titletb, tme: 9);
writeln(double, title2); writeln(space, title3);
urite(space, titled); writeln(titie5, titled)
end { newpg };
{ néwpg }
( Li a2l )
{; open - open an included file }
( ANTEREEE )
procedure open { nawe:alfa },
yar
f: fleng;
begin
over(ftop, maxfiles); fstack{ftop + 1).fname := name; ¢ :=0;
uhile fstack(fl.fname O name do f := f + 1;
<= ftop then error{eropen)
eTse
in
ftop := ftop + 1;
uith fstack[ftopl do

begin
f i3 neme;

{ ?memtbiopemd\dmn-m-e }
reset{ffile); fline :=0; Llast :*= 0; next := {;
inlinelnext] :» newline; wtop := 0; getch

ond

end
end Topen };
( E i }
over - abort on overflow }
{ AN Rd )
procedure over { i:integer; maxval:intsger };
begin error{erover); goto 1 end

ai%l_ti >= maxvel then
ond T “over };

(mnm}

{ parse - parse the input program }

( L iyt }

procedure parse { top:crng; tok:lex };

begin
getkey;
uhile not (Lextyp in [lexeof, Lexend, lexfwdl) do
Lextyp in [lexrec, Lexfun, Lexproc, l.cxcon, Lexmcon, Lexbeg,
T lexcasl™
then
case lextyp of
exbeg:
puttok;
if tok in (Lexproc, texfunl
then begm tok :* lexbeg;
‘else parse(ctop, Lexbeg)

getkey end

e

lexcas:

-4
L3
-
3

puttok;

if tok = texrec
end;
lexcon:

gin puttok;

then getkey else parse(ctop, lexcas)

if expropt  then parsecon else getkey
Vo begin puttok;
Lexmcon: parseacon;
lexproc:

begin puttok;
lexrec: begin puttok;

scanheader; parse(ctop, Lexfun) end;

scanheader; parse(ctop, Lexproc) end;
parse(ctop, lextyp) end

end { case’
else bgin puttok; getkey end;
puttok;



PASCAL NEWS #17 MARCH, 1980 PAGE 39

1981 it (lextyp = lLexeof) and (tok <> lexeof) 2091 procedurs pushback;
1982 Then begin error(erparsect); goto 1 end 2092
1983 else 2093 begin
_ 1984 T¥ (lextyp = Lexend) and not (tok in (lexbeg, lexcas, Lexrecd) 2094 !? atop > 0 then with mstackistop) do snext := mnext - 1
- 1985 Tcn error(erparsend)” 2095 else next := next -
1986 se 2096 ﬁl pushback };
1987 W (lextyp = lexfud) and not (tok in [lexproc, Lexfunl) 2097
1988 Then error(erparsfud); 2098 [ asenwaer |
1989 if Lextyp © lexeof then getkey; ctop := top; cvalid := top 2099 ttok - put out a token for pascal using cols l-grc }
1990 end { parse }; 2100 { awwwwass |
991 T 2101 procedure puttok;
1992 { sewaween | 2102
1993 { parsecon - parse a constant declaration with expression | 2103 var
1994 [ weaenaes | 2104 i: lneng;
1995  procedure parsecon; 2105
1996 : 2106 begin
1997 var ralirg l_‘ (Lastlex in confl) and (lextyp in confl) then
1998 savtyp: lex; 2108 begin
1999 savstr: steng; 2109 write{psource, blank) { space needed between tokens };
2000 savien: lnrng; 2110 outpas :* outpos + 1
2001 svalid: boolean; 2111 end;
2002 consnam: alfa; 2112 lextyp = lexeof then begin writetn(psource); outpos := 0 ond
2003 2113 else -
2004 begin 2114 in
2005 getkey; 2115 (outpos + Lexlen) > prcopt
2006 while lextyp = lexalpha do 2116 then
2007 in 2117 begin
2008 puttok; over{ctop, saxcons); ctop := ctop *+ 1; 2118 oline := pline + 1; writeln(psource); outpos := 0;
2009 pack(lexstr, 1, consnam); getkey; 2119 if lexten > prcopt
2010 if lextyp < lexeq 2120 Then begin errorerputtok);  Lexlen := prcopt end
2011 then 2121 end;
2012 Begin 2122 fo—T’-- 1 to Lexlen do write(psource, Lexstr{{));
2013 error{erparscon); ctablctopl.ctyp := terr;  flush; 2123 Outpos :* outpos + Lexlen; lastlex := lextyp
2014 getkey 2124 end
2015 end 2125  end T puttox };
2016 else 2126
2017 in 2127 [ wwrssan )}
2018 puttok; getkey; while ch = blank do getch; 2128 { relate - parse subexpression with rel. ops |}
2019 f (ch = seni) and (Textyp Jn Clexint, "~ Lexreal, lexother)) 2129 { sexataan }
2020 2130 procedure relate;
2021 Egﬁn 213
2022 ssvstr := lLexstr; savlen := lexlen; 2132 var
2023 savtyp := Lextyp; svatid := true 2133 op: lex; .
2024 end 2134 i: integer;
2025 else svalid := false; 2135 r: real;
2026 expression; 2136 cl,
2027 it (lextyp © Lexsesi) and (not typeis([terr])) then 2137 c2: csrng;
2028 b_qin experror(erpconsyn);  ctablctopl.ctyp := terr end; 2138
2029 if ctablctopl.ctyp © terr 2139 in
2030 then 2140 arith;
2031 begin 2141 while (lextyp in Clexit .. Lexnel) and (not typeis(lterrl)) do
2032 1T svalid 2142 in
2033 Then 2143 over(ctop, maxcons); ctop :® ctop + 1; op = lextyp;
2034 "EPE 2144 getkey; arith;
2035 exstr := savstr; lextyp := savtyp; 2145 if typesmatch
2036 lexlen := savien 2146 then
2037 od 2147 with ctablctop - 1] do
2038 else convrt; 2148 case ctyp of
2039 puttok; lextyp := lexsemi; lexstr{1) := semi; 2149 tin:
2040 lexlen :s 1; puttok; ctablctopl.cname := consnam; 2150 begin
2041 cvalid := ctop 2151 = ci; ctyp := tbi;
2062 ond 2152 case op of
2043 else 2153 Lextt: cb := i < ctablctopl.ci;
2044 in 2154 lexle: cb := § <= ctablctopl.ci;
2045 lexstr{1] := zero; lexstr[2] :* semi; 2155 lexeq: ¢b :* i = ctablctopl.ci;
2046 lextyp := lexst; Llexien :x 2; puttok 2156 texge: cb := { >= ctablctopl.ci;
2047 end 2157 lexgt: cb := i > ctablctopl.ci;
2048 ;o 2158 texne: cb := 1 © ctablctopl.ct
2049 nbt:top].ctyp in Cterr, tot]l then ctop := ctop -~ 1; 2159 end { case }
2050 - 2160 od;
2051 2161 tre:
2052 end T parsecon }; 2162 in
2053 2163 r s ¢r; ctyp :® tbl;
2054 { wteewaaw ) 2164 case op of
2055 parsemcon - parse an internal constant deciaration with expression } 2165 Texlt: cb := r < ctabletopl.cr;
2056 [ tnwsens ) 2166 lexle: cb := r <= ctablctopl.cr;
2057 2167 Lexeq: ¢b := r = ctablctopl.cr;
2058 procedure parsescon; 2168 Lexge: ¢b := r >= ctablctopl.cr;
2059 2169 Lexgt: cb := r > ctablctopl.cr;
2060  var 270 Lexne: cb := r © ctablctopl.cr
2061 consnem: alfa; 2m end { case |}
% 2172 end;
begin 2173 tbl:
2064 getkey; 2174 case op of
2065 whils lextyp = Lexalpha do 275 Textt: cb := cb < ctablctopl.cb;
2066 in - 2176 Lexle: ¢b :» cb <= ctablctopl.ch;
2067 over(ctop, maxcons); ctop := ctop + 1; 2177 lexeq: cb := cb = ctablctopl.cb;
2068 pack{lexstr, 1, consnam); getkey; 2178 lexge: ¢b := cb >= ctablctopl.chb;
2069 if Lextyp © lexeq 2179 lexgt: cb := cb > ctablctopl.cb;
070 Then 2180 texne: cb :* cb < ctablctopl.ch
071 Egin 2181 end;
2072 error(erparsacon); ctab(ctopl.ctyp := terr;  flush; 2182 tot: begin experror(errelatyp); ctyp := terr end;
2073 getkey 2183 tch:
2074 end 2184 begin
2075 else 2185 cl ;= cfirst; ¢2 := ctablctopl.cfirst; i:=1;
- 2076 begin 2186 while (i < clen) and (cstrlc1] = cstrlc2]) do
2077 getkey; while ch = blank do getch; expression; 2187 T:=i+1;
2078 if (Lextyp <> lexseai) and T_ot typeis((terr])) then 2188 cstop := cstop - clen - ctablctopl.clen;
2079 “begin experror(ermconsyn);  ctablctopl.ctyp :* terr end; 2189 ctyp := tbl;
2080 if ctablctopl.ctyp © terr then 2190 case op of
2081 Tbegin ctablctopl.cname := consnam;  cvalid := ctop end 2191 Textt:ch := eatrleld < eatrlcd);
2082 end; 2a92 texle: cb := cstrlct] < cstric2);
2083 if ctablctopl.ctyp in [terr, tot] then ctop := ctop - 1; 2193 texeq: c¢b :® cstrlc1) = cstrlc2);
2084 getkey - 2194 Lexge: cb :* cstrlcll > cstrlc2);
2085 2195 Lexgt: ¢b := cstric1) > ¢strlc2);
2086 end T parsemcon }; 2196 Lexne: cb := ¢strlct] © estrlc?)
2087 2197 end { case }
2088 { vevanans } 2198 "‘d—_
2089 pushback - push character back onto input } 2199 end T case }
2000 [ *hesenrs 2200 else




PASCAL NEWS #17 MARCH, 1980 PAGE 40

2201 it ctablctopl.ctyp <> terr 2302 var
2202 Then begin experror(errelconf); ctablctopl.ctyp := terr end; 2303 ratio: real { lines/sec ratio };
2203 ctop := ctop - 1 2304
2204 end 2305 begin
2205 end T relate }; 2306 if outpos > 0 then writeln{psource);
2206 2307 —T nerrors > 0 then
2207 { wewwenws |} 2308 hegin
2208 { header - scan procedure or function heading |} 2309 need(2);
2209 { wwewiwan | 2310 writeln(doubte, '==~> there were °, nerrors: 1,
2210 procedure scanheader; 2311 ' errors detected by sap');
21 T 2312 end;
2212 var 2313 tottme := clock - timein;
2213 - ctr: integer; 2314 if tottme = 0 then ratio := 0.0
2214 2315 else ratic := 1000 # Line / tottme;
2215 begin . 2316 need(2);
2216 getkey { get name }; puttok { get name |}; 2317 writeln(double, '——> end run: ', Line: S5, ' input Lines,', pline: &
217 getkey { get paren if parameters }; 2318 , ' output lines,', tottme: 7, ' NS (', ratio: 8: &,
2218 if Lextyp © Llexlparen then puttok 2319 ' lines/sec)");
2219 else 2320 end { temminate };
2220 begin 2321 -
2221 ctr := 1;  puttok; 2322 [ wavawanr
22 repeat 2323 { timedate - get time and date and store in cstr }
2223 getkey;  if lextyp = Lexlparen then ctr := ctr + 1; 2324 [ waasannw )
2224 if lextyp = Lexrparen then ctr := ctr - 1; puttok 2325 procedure timedate;
2225 until ctr = 0 2326
2226 end 2327 begin { get time and date from system and make }
gg: end T scanheader }; gg: { “cstr(l..16] mm/dd/yyhhmm:ss %
{
2229 { wewmawan | 2330 { global variables tme and dte should be }
2230 { term - process multiplication ope in expression } 2331 set to time ani date for the listing 1
2231 [ wewewens | 2332 m:x and date }
2232  procedure ters; 2333 unpack un/oo/vvm-nu.ss', estr, 1);  tme := 'oTINEw W
2233 2334 dte := '#TODAY: *
223 var 2335 end { timedate }:
2235 - op: lex; 2336
2236 2337 - { wransann
2237 begin 2333 { typeis - return true if type of top of stack is in set |}
2238 actor; 2339 { wwesanas |
2239 1& (Lextyp in [lexand .. lexmodl) and (not typeis([terrl)) 2340  function typeis { c:cset):boolean };
2240 2341
2241 '? (typeis([tbl1) and (lextyp = lexand)) or (typeis([trel) and ( 2342 begin typeis := ctablctopl.ctyp in c end { typeis };
2242 textyp in Clexmult .. lexmax1)) or (typeis(Ltin]) and (Uextyp 2343
2243 in [lexmult .. Lexmod))) 2344 | wrnsanes |
2244 then 2345 { typemmatch - return true if types of top operands campatible |}
2245 while lextyp in [lexaﬂd .« Lexmod) do 2346 [ weswswen |
2246 “begin 2347 function typessstch { :boolean };
2247 ctop := ctop + 1; op :* lextyp; getkey; factor; 2348
2248 with ctablctop - 1] do 2349 begin
2249 T (op = lexand) and (ctyp = tbl) 2350 typesmatch := false;
2250 —Fm ¢b 1= cb and { ctablctopl.cb 2351 uith ctablctop - 11 do
2251 else 2352 T3 ctyp = ctablctopl.ctyp then
2252 T (op in [lexdiv .. lexmodl) and (ctyp = tin) 2353 Tif ctyp © tch  then typesmstch :* true
2253 then 2354 else if clen = ctablctopl.clen then typesmatch := true
2254 case op of 2355 end { amatch };
2255 Texdiv: c¢i := ci div ctablctopl.ci; 2356 T e
2256 Llexmod: ci := ¢i mod ctablctopl.ci 2357 [ wawsmann | .
2257 end { case } 2358 { variable - recognize variable in expression }
2258 else 2359 ( wawrazas
2259 7 (op in [lexsmult .. Lexmax)) and typeis(ftin, trel) 2360 procedure variable;
2260 Then 2361
2261 begin 2362 var
2262 ‘_ﬂ'f'(ctyp = tin) and typeis([tinl) and (op <> 2363 T name: alfa;
2263 Lexdvd) 2364 found: bootean;
2264 then 2365 fun: fns;
2265 case op of 2366
2266 lexmult: ci := ci * ctabletopl.ci; 2367 m_}g
2267 lexmin: 2368 not (lextyp in [lexalpha, lexint, lexreal, lLexstl)
2268 if ctabletopl.ci < ci 2369 Then begin experror(ervalexp); ctablctopl.ctyp := terr end
2269 then ci := ctabletopl.ci; 2370 else
2270 lexmax: 2371 case lextyp of
2z2n it ctablctopl.ci > ci 2372 Texint: bgm convrti;  getkey end;
2272 Then ci := ctablctopl.ci 2373 Llexreal: begin convrtr; getkey end;
2273 ond T case } 2374 Lexst: begin convrts; getkey end;
2274 else 2375 Lexalpha:
2275 —m 2376 begin
2276 orcereal; 2377 pack(lexstr, 1, nase); getkey; found := false;
2277 case op of 378 . if Lextyp O Llexipsren
2278 Lexmult: cr := ¢r + ctablctopl.cr; - 2379 then
279 texdvd: cr := cr / ctablctopl.cr; 2380 begin
2280 lexamin: 2381 findcon{name, found);
2281 if ctablctopl.cr < cr 2382 if not found then
2282 then cr := ctabCctopl.cr; 2383 Twith ctablctop] do
2283 Lexmax: 2384 begin ctyp := tot; co :T name end
2284 1f ctablctopl.cr > cr 2385 end
2285 then cr := ctablctopl.cr 2386 else
2286 end T Case } 2387 begin
2287 end 2338 flookup(name, fun, found) { function call };
2288 end 2389 if not found then experror(ervarfnct)
2289 else 2390 else
2290 ¥ ctablctopl.ctyp <> terr 2391 begin
229 then experror(erterstyp); 2392 getkey; expression;
2292 ctop := ctop ~ 1 2393 if Lextyp <> lexrparen then experror(ervarrpar)
2293 end 2394 else begin getkey; evalfns(fun) end
2296 else error(ertermtyp) 2395 end -
2295 end T term I; 2396 end ~
2296 2397 end ~
2297 [ wewawsas | 2398 end T case }
2298 { terminate - print statistics and close files } 2399 end T variable };
2299 { wwsawwrs | 2400 begin { map }
2300 procedure terminate; 2401 initialize; parse(ctop, Lexeof);
2301 2402 1: terminate end.

A A X E X X XXX XXX X X R X



PASCAL NEWS #17

[ S
MEPEUWN2L2OORERNG AL WN

MARCH,
program Xref(inout, output, tty) { N. Wirth 10.2.76 }; 1!;
"
{ Cross Reference generator for Pascal programs 1 113
{ gquadratic quotient hash method } 114
{ revised by R.J.Cichelli l6-Feb-79 } 115
{ include perfect hash function, ring data structures, } 116
{ and clean up code. } 117
{ revised by J.P.McGrath 22-May-79 } 118
{ predefined identifier processing i 119
{ wodified quicksort algorititm } 120
{ comsand line processing by M.Q.Thompson } 121
{ revised by R.J.Cichelli 26-Nov-79 } 122
{ string table processing and work-files } 123
{ Copyright 1979 Pascal Users Group } 124
{ permission to copy - except for profit - granted } 125
{ 126
* purpose: 127
This program croes references Pascal programs. 128
It supports upper and lower case, long identifiers and 129
long programs. 130
131
* Authors: 132
N. wWirth, R.J.Cichelli, M.Q.Thompeon, J.P.McGrath. 133
134
* Method: 135
Quadratic quotient hash method with tagged, quick-sorted strimg 136
table and perfect hash function reserved word and predefined 137
identifier filters. Overflow processing by multi-file merge-sort. 13:
13
* Description of paraseters: 140
DBC PDP 11 RSX protocol. 141
PXR <output fileda<input file> [<options>] 142
<options> ::= 143
C- captalize identifiers, 164
D+ display program, 145
P~ cross reference predefined identifiers, 146
T- terminal output (80 columns and ids. only), 147
W=132 width of output. 148
149
b t: 150
Pascal Program source. 151
152
* Qutput: 153
Listing and references. 154
155
* Limitations: 156
157
* Computer system: 158
Program was run under Seved Torstendahl's DBC PDP 11 RSX Pascal. 159
This compiler (version 4.5) doesn't support program parameters 160
in full generality. In this program implememtation specific 161
code handles control card cracking and file variable and system 162
file name associations. 163
164
* Installation under RSX: 165
166
DP1: XREF/~FP/MU, T : /SH=DP] : XREF , ODL/MP 167
TASK=. . .FXR 168
LIBR=SYSRES: RO 169
EXTSCT=SHEAP] : 40000 170
EXTSCT=$$FSR1: 5140 17
UNITS=6 172
/" 173
174
;00L  (overlay description) 175
.ROOT R1-*(01,02) 176
: .FCTR DPL:XREF/LB:XREF :PAGEHE-DPO: [1, 1] PASLIB/LB 177
ol: .FCTR DP1:XREF/LB:QUICKS 178
02: .FCTR DP1:XREF/LB: INITPE-03-*(021,022) 179
. 021: .FCTR DPl:XREF/LB:INITCH 180
022: .FCTR DPl:XREF/LB:INITPR 181
: .FCTR DPO: [1, 1} PASLIB/LB:GCML 182
.END 183
} 184
185
{$R- no runtime testing } 186
{SW- no warning messages } 187
188
const 189
quote = "', 190
LCurleyBra = *'('; - 191
rCurleyBra = ‘)}*; 192
HashTbiSize = 997 { size of hash table - prime }; 193
fMaxitems = 4000 { arbitrary limit on incore references }; 194
StgThiSize = 6000 { string table size }; 195
StgThiLimit = 5900 { limit is size - 100 1z 196
NumOfReserved = 40 { size of reserved word table }; 197
NumOfPredefnd = 48 { size of predefined id table }; 198
keylength = 10 { keylength }; 199
DigitsPerNumber = 6 { no. of digits per number }; 200
LinesPerPage = 57 { lines/page }; 20
DefaultTerminaliidth = 80 { terminal width }; 202
Defaultlpwidth = 132 { line printer width IR 203
NaxLineNo = maxint { maximum line number 1; 204
205
trpe 206
text = file of char; 207
index = U .. HashTbiSize; 208
StgTolIndx = 1 .. StgTblSize; 209
alfa = packed array (1 .. keylengthl of char; 210
IteaPtr = "item; - M
word = record 212
keyindx, 213
keylen: StgT™dlIndx; 214
Lastptr: ItemPtr 215
end; 216
item = packed record 17
LineNusber: 0 .. MaxLineNo; 218
next: ItesPtr 219
end; 220

1980

LineBuffer = packed array (1 .. 803 of char;
Chriype = (uclLetter, LcLetter, digit, other);
FilStates = (inout, inurkl, wrklout, wrklwrk2, wrk2out,
wrk2urkl);

var
- charindx,
idlen,
HshTblIndx:
empty:
identifier:
CurrentLineNumber: integer { current line mmber };
LinesOnPage: integer { number of lines on current page
LineNosPerLine: integer { no. of line—numbers per line };
HashTable: array [index] of word { hash table };
StgTable: packed array [(StoTbllindxl of char
i for storing dentifiers 1};

integer;
alfs;
alfa;

integer;
ItewPtr;
integer;

FreeStgPte:
FreeltemPtr:
Item(nt:
Chriatagory: array (char] of Chrlype;
thrSortOrd: array Ccharl of integer;
ReservRepresentedBy,
PredefRepresentedBy: array {char {
LastieadingChar,
ch,
rawch,
fstchar,
Lstchar: cher;
reserved: array (1 ..
predefined: array {1 ..
Linelength: integer;
cmlline: LineBuffer;
calien: integer;
today,
nows:
QutputSection:
PageNumber:
DisplaylsActive,
DoPredefined,
terminal,
AllCapitals: Boolean; _ .
state: FilStates;
NextState: array (FilStates, Boolean] of FilStates;
wrk2active: Boolean;
wrkl,
wrk2:

‘A .. '9' ] D of integer;

NumOfReserved] of alfa;
MumOfPredefnd) of sifs;

acked array (1 .. 10] of char;
1st1rr"c'§mts); - ‘

integer;

text;

procedure Pageheader;

var
i: integer;
IsNarrow: 0 .. 1;

begin

IsNarrow := 0;
if not terminal
then
Begin
PageNumber := PageNumber + 1;  page(output);
write(' CrossRef - ');
case OutputSection of

Listing: write('Program Listing );
idents: write('Identifier (ross—Reference b
end;
write(' ', today, ' ', now: 8);

if Linelength <= DefaultTerminalWidth
then begin writeln; write(' '); lsNarrow
else write(* 9;
for i := 1 to callen do write(cmilineli));
write(' ': T25 *= IsNarrow + 40 - catlen));
writeln(® Page ', PageNumber: 3); writein;
end;
LinesOnPage := IsNarrow;
end { pageheader };

it

function UpperCase(ch: char): char;

in { This should work for both ASCII and EBCDIC. }
if chrcatagorylchl = Lcletter
then UpperCase := chr(ord(ch) = ord('a’) + ord('A'))
else UpperCase := ch;

end T uppercase };

function EqQlStg(indx1, lenl, indx2, len2: integer): Boolean;

yar
disp,
StopAt: integer;
begin
if lent < len2  then EqiStg := false
else
begin
disp := 0; StopAt := lent - 1;
while (disp < StopAt) and (StgTablelindx1 + displ = StgTablel
indx2 + displ) do
disp := disp + {;
EglStg := StgTablelindx1 + disp) = StgTablelindx2 + displ
end

end Teqlstg };
function LssStg(indxt, Lenl, indx2, len2: integer): Boolean;

yar,
StopAt,
disp,
point: integer;

begin

PAGE 4]



PASCAL NEWS #17

221
22
223
224
225
226

if lent < len2
Tsp := 0;
while (StgTablelindxt + disp) = StgTablelindx2 ¢ displ) and (disp <
T StopAt) do -
disp := disp + 1;
point :s disp;
while (UpperCase(StgTablelindx! + displ) = UpperCase(StgTablelindx2
+ displ)) and (disp < StopAt) do
disp := disp + 1;
it UpperCase(StgTablelindx1 + displ) = UpperCase(StgTablefindx2 +
displ)
then
77 len! = Len2
then
LssStg := ChrSortOrd(StgTableCindx1 + pointd] < ChrSortOrd(
StgTablelindx2 + pointld .
else LssStg := lenl < Len2
else
LssStg := ChrSortOrd(StgTablelindx? + displ] < ChrSortOrdCStgTable
Cindx2 + displd;
end { lssstg };

then StopAt := lenl = 1  else StopAt := len2 - 1;

{SY+ new segment }

procedure PrintTables(var infil, out: text);

var
tryindx,
trylen: integer { quick sort temporaries };
Swapilord: word { quicksort temporary };
aidpoint: integer;
Tolindx,
MoveToIndx: index;
i: integer;
NumberCounter: integer;
CmpRefPtr,
CopRefLen: integer;

procedure QuickSort(LowerBound, UpperBound: integer);

var

TaplowerBnd,
TapUpperBnd: integer;

begin

regut
wploverBnd := LowerBound; TmpUpper8Bnd := UpperBound;
midpoint := (TeplowerSnd + TmpUpperBnd) div 2;
tryindx :» HashTablelmidpointl.keyindx; —
trylen := HashTablelmidpointl.keylen;
repeat
while LssStg(HashTable{TmpLoverBnd).keyindx, MashTablel
TapLower8nd).keylen, tryindx, trylen) do
TeplowerBnd := TapLowerSBnd + 1;
while LssStg(tryindx, trylen, HashTablel{TapUpperBndl.keyindx,
HashTable[TapUpperBndl.keylen) do
TupUpperBnd := TepUpperBnd - 1;
it TmpLoverBnd <= TepUppertnd

then
begin
wapilord := HashTable[TapLowerBndl;
HashTable(TapLowersndl := HashTable(TmpUpperBndl;
HashTable(TepUpper8nd] := SwvapWord;
Tapl.overBnd := TapLowerBnd + 1;
TapUpperSnd := TapUpperBnd ~ 1

ond
unt iU TaplowerSnd > TepUpper8nd;
7T TapUpperBnd - LowerBound < UpperBound - TeplLowerBnd
then
begin
LowerBound < TapUpperBnd
then QuickSort (LowerBound, TmpUpper8nd);
LowerBound := TaplowerBnd;
end
else
in
1t Tmplower8nd < UpperBound
then QuickSort(TaplLower8nd, UpperBound);
UpperBound :* TapUpperBnd;

end;
unt iT UpperBound <= LowerBound;
_._na T quicksort };

procedure Endl.inelachar: char);

begin
if OutputSection = idents
then
in
writeln(out); LinesOnPage := LinesOnPage ¢ 1;

if LinesOnPage > LinesPerPage
then begin Pageheader; LinesOnPage := 1 end;
end

else writein{out, achar);

end | endline };
procedure PrintNumbers(avord: word);

yar
LoopPtr,
TailPte: ItesPtr;

begin
2 lPtr := aword.lastptr;
TailPtr := LoopPtr;
repeat
1f NusberCounter = LineNosPerline then
begin
NumberCounter :z 0; EndLine(',');
write(out, * ‘: keylength + ord(QutputSection = idents));

LoopPtr := TailPtr .next;

MARCH, 1980

n
33
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
n
3
373
374
375
376
3
378
379
380
381
382
383
384

PAGE 42

WusberCounter :* NusberCounter ¢ 13
write(out, LoopPtr®.LineNumber: DigitsPerthmber);
LoopPtr := LoopPtr-.next
until LoopPtr = TailPer;
{ Tree cing }
aword.lastptr”.next := FreeltesPtr;
End.ine('.");
end { printrumbers };

FreeltesPtr := LoopPtr;

procedure NextRef;

11 CmpRefLen > 0

then
Ecgin
CapRefLen := 0;
if not eof(infil) then

repeat i
StgTable(CupRefPtr + CmpRefiLen] := infil®;
CmwpReflLen := CmpRefLen ¢ 1; get(infil)
until Cinfit® = ¢ %)
end
end T nextref };
procedure Outld(keyptr, ienkey: integer; SetUpforflos: Boolean);
yar

chindx: integer;

begin
1f OutputSection = idents

then
in
(LinesOnPage ¢+ 4) > LinesPerPage
then begin Pagehesder;  Li age := 1 end
else

|_'? LastLeadingChar < UpperCase(StgTablelkeyptrl)
then Endline(' ');
nntelom, '
LastLeadingChar := UpperCase(StgTablelkeyptr]);
end;
for chindx := keyptr to keyptr + lenkey - 1 do
writeCout, StgTablelchindxd);
if SetUpForNos
then
begin
if Lenkey > keylength
then

Degin
write(out, ' ': ((DigitsPerNumber - 1) - ((lenkey -~ (
keytength + 1)) mod DigitsPerNumber)));
NumberCounter := ((Tenkey ~ keylength) div DigitsPerNumber
)+ 1;
end
else
in
writelout, * ': (keylength - lenkey));
NumberCounter := 0

end;
end
end T outid };

procedure CopyRef(ALLOfIt: Boolean);

var
Lastlen: integer;

procedure CopylLines;

yar
RefDone: Boolean;
savech: char;

begin
astlen := CmpRefien; Refbone := false;
re&at

r at

write(out, infil®); Llastlen := Lastlen + 1; get(infil)
until (infil™ = *, ") or Ginfil”® = ', or eoln(infil);
savech := infil";
if savech = '.*
Then

begin

Retbone := true;
if not ALLOfIt then
begin
savech :s ' ';
NuaberCounter := ((lastlen - keylength) div
digitsPerNumber);
end;

eng
else lastlen := 0;
while not eoln(infil) do get(infil);
¥ eofTintiLd
Then begin CmpRefLen := 0;
else get (infil);
¥ savech <> ' * then

"hbegin
EndLine(savech);
if not Refbone and (OutputSection = idents)
then writeCout, ¥ ');
end;
untiT Refdone
end [ copy lines };

Refdone := true; end

begin { copyref
Outld(CmpRefPtr, (mpRefLen, false);
end { copyref };

CopyLines;



PASCAL NEWS #17

procedure syncronize(sword: word);

var
done: Boolean;
begin
done := false;

with aword do

repeat
_KET CmpRefLen = 0
then begin done := true;
else
i LssStg(CmpRefPtr, CmpRefLen, keyindx, keylen)
Then begin CopyRef(true); NextRef end
eise
it EqlStg(CmpRefPtr, CmpRefLen, keyindx, keylen)

Ihen begin CopyRef(false); NextRef; done :3 true;
clse
Eﬂ.‘.ﬂ Outld(keyindx, keylen, true); done := true;

in { printtables }
LinesOnPage :* LinesPerPage;
for Tolindx := 0 to HashTbiSize - 1 do
T 31 HashTablLeCTbIIndxl.keyindx < 0 then
in

ashTsble{MoveToIndx] := HashTableLThlIndxl;
NoveToIndx := MoveTolndx + 1
ond;

0e;
if moveTolndx > 0 then QuickSort (D, MoveToIndx - 1);

MARCH, 1980

Outld(keyindx, keylen, true); end

eng

end;

MoveTolndx := 0 { compress table };

TineNosPerLine := (LneLength - keylength - 1) div DigitsPerNumber;

CapRefPtr := FreeStgPtr + idien;

it state > inwrkl

then begin CapRefLen := 1;

else CapRefLen := 0;

Ir Washubum].hyindx < 0 then

““for Tblindx := 0 to MoveToIndx - 1 do

in
syncronize(HashTablelTblIndx1);
Printumbers(HashTablelThLIndx]);

LastLeadingChar := * 1;

while TupRefLen © O do begin CopyRef(true);  NextRef; end;
tables };

ed T print
procedure DuspTables;

var
chptr: integer;

in
state := NextStatelstate, (OutputSection = idents)];
case state of

Tnout: PrintTeblesCinput { dummy }, output);

inurkt:
in
{} rewritelurkl, 'XRFIJNK.THP;1',, *DPO:');
PrintTables(input { dumay 1}, wrkl);
wrkTout:
in
{} reset(wrkl, "XRFIINK.THP;1',, '0P0:');
Printtabln(urkl, output);
vrﬂ rkz-
{} rcut(urll, "XRFIJNK.TWP;1',, 'DPO:*);
{} rewritelvrk2, "XRF2JNK.THP;1',, '0PO:%);
wrk2active := trye; PrintTables(wrkl, wrk2);
ond;
out :
in
(33 reset (wrk2, 'XRF2INK.TWP;1',, ‘DPO:');
PrintT-blos(urkZ, output)
.rtz:?n-
{} uset(urtz, CXRF2INK.THP;1%,, 'DPO:');
{} revritelurkl, *XRFIINK.TWP;1',, 'DPO:*);

Printnblus(nrtz, wrkl)

end T_ 1
W'Outputs"nen © idents

in
ealnt := 0;

for HshTblIndx := 0 to HashTbiSize do
HashTablelHshTblIndx).keyindx := T;

for chptr := 1 to idlen do

TStgTablelchptr] := StgTablelFreeStoPtr + chptr - 13;

freeStgPtr := 1;

L'\gT—’d\m tables };

procedure scan;

Label
T 1 exit scan on eof while processing comsent };

procedure advance;

!7 leayluctive then write(rawch); getCinput);
Tawch 12 inpwt®; ch := erCase(input”);
end { advance };

procedure Openliine;

in
CurrentLineiumber := CurrentlineNusber + 1;

NextRef { first reference }; end

551
552
553
554
555
556
557
558
559

PAGE

if displaylsActive
then
begin
it LinesOnPage >= LinesPerPage then Pageheader;
Write(* ', CurrentlineNumber: DigitsPerNumber, ' ');
LmesOan := LinesOnPage ¢+ 1;

end! openlmz b
procedure Closetine;

begin
get (input); rawch := input®; ch := UpperCase(input®);
if DisplaylsActive then writein;
end [ closeline };
procedure enter;
yar
hashval,
FstHashval,
displacesent: integer;
NewliteaPtr,
TailPtr: ItewPtr;
found: Boolean;

i: integer;
procedure Hakelev(var AnltewPtr: ItemPtr);

!7 (ItesCnt > RaxItems) or (FreeStgPtr > StgTblLimit)
then dumpTables;
if FreelteaPtr = nil
else

in

AnltesPtr := freeltesPtr;

end;
ItemCnt := Itemtnt + 1
end { makenew };

then newlAnitesPtr)
freelteaPtr := AnltesPtr”.next
in { enter }

NakeNew(NewIteaPtr); hashval := 1;
for i :x FreeStgPtr to FreeStgPtr + idlen - 1 do

43

“Tashval := (hashval » 17 + .bs(ord(stgramm) - ord(*A*))) sod

HashTblSize;
FstHashVal := hashval; found := false; displacesent := 1;
NevIteaPtr” . Lineliumber := CurrentlLinelumber;

repeat
15 HashTablelhashvall.keyindx = 0
then
in { new entry }
ound := true; HashTablelhashvall.keyindx := FreeStgPtr;
HashTablelhashvall.keylen := idlen;
FreeStgPtr := FreeStoPtr ¢+ idlen;
HashTabielhashvall.lastptr := NewltewPtr;
NewiteaPtr-.next := NewltesPtr;
end
else
31 qlstg(FreestgPtr, idlen, HashTableChashvall.keyindx,
HashTablefhashvall.keyien)

then
“hegin [ found }
found := true; TailPtr :- HashTableChashvail.lastper;
NewltesPtr”.next := YailPtr".next;
TailPtr® . next := NewitesPtr;
HashTableChashvall.lastptr := NewltewPtr;
ond
else
in { collision }
ashval := (hashval + diwlocmnt) 80d HashTbisize;
displ := displ +2;
if displacement > 2 + HashTblSize then
in
SuspTables; hashval := FstHashVal;
displacesent := 1;
{ stacrt over }
end

end
unt il Found
end | enter };

begin { scan )
11 eof(input)
then in unteln(tty, ' Empty input file.');
Tawch := Tnput”; ch :* UpperCaselinput®);
while ﬂo;teof(input) do
in

goto 1; end;

ent ine;
while not eoln(input) do

begin
Af ch =" ' then advance

else
if ChrCatagorylch] in (ucLetter, lcLetter]
then
in
charindx := 0;
fstchar := ch;

idlen := 0; identifier := empty;

rg%ot
1f charindx < keylength then
in

charindx = charindx + 1;
identitierCcharindx] := ch;

“Q
if Allcapitats
Then StgTablelFreeStgPtr + idlend
else StgTablelFreeStgPtr ¢ idlen)
en := idlen + 1; advance
until not (ChrCatagoryLeh] in [ucletter, digitd);
Tstchar := identifierfcharindx);
if idlen > charindx  then enter

= ¢h
= rawch;



PASCAL NEWS #17 MARCH, 1980 PAGE 44

561 else m if ord(*A') = 193  then { EBCDIKC |} RaxCharOrd :® 235
662 17 identifier © reserved(charindx + me else
663 T ReservRepresentedBy(fstcharl + 3 3% ord('A*) = 65 then { ASCII } MaxCharOrd := 127
&b4 ReservRepresentedBylilstcharl]l { perfect hash } 76 else MaxCharOrd := DefaultMaxCharOrd;
465 then s for 1 :x WinCharOrd to MaxCharOrd do
666 ¥ doPredefined  then enter 78 begin Chrcatagory(chr(i)] := other; ChrSortOrdlchr(i)] := 0;
667 e m 5__,%-
668 1_7 identifier © predefinedicharindx + 778 for ch := '0' to ‘9 do
669 PredefRepresentedBy(fstcharl + 9 begin
670 PredefRepresentedBy{lstcharl] 780 Chrcatagorylchl := digit;
&n then enter; 781 chrsormrd[ch] := 100 + ord(ch) ~ ord('0');
672 end 782
673 else 783 (—Sﬂould work for all Pascal campstible character sets }
874 " chrCatnoryt:hJ = digit 784 { which are contiguous and for EBCDIC as well.
675 785 InitChrval(®a*, 'i', 2); InitCheval(*j', 'r', 20);
876 advance; if ch = '.' then advance 786 InitChrval('st, *z', 38);
677 _.%l_(chrcnagoryrh] < d\g’lt) “and (ch <> '€*) b 14 end { initletdig };
678 {} md (ch < '8') and (ch O ‘e’ 788
144 else 789 procedure InitPerfect;
630 if ch's quote 790
681 then m procedure InitReserved;
682 begin { string 1} 792
683 repeat advance 793 var
684 until (ch = quote) or eoln(input); 79 ch: char;
685 i1 not eolnCinput) then advance 795
686 od T 9 in { RIC's perfect hash function }
687 etse 97 for Pascal's reserved words and predefined identifiers }
688 “3¥ ch = LCurleyBra 798 { table index = jdentifier length + }
689 then 799 { reservrepresentedby [identifier's first character] + }
690 in { comment } 300 { reservrepresentedby | identifier's last character] }
691 ance; M for ¢h := '0' to '9' do ReservRepresentedBy(ch] := 0;
&92 while ch © rCurleyBra do 802 ReservRepresentedBy('AT) := 11;
493 “begin 803 ReservRepresentedBy('8'] := 15; ReservRepresentedBy('C'] := 1;
694 advance; 304 ReservRepresentedBy('D']) := O;  ReservRepresentedBy('t'] := 0;
695 while eoln(input) do 305 ReservRepresentedBy('F'] := 15; ReservRepresentedBy('6¢'] := 3;
496 begin 806 ReservRepresentedBy['H'] := 15;
697 Closeline; 807 ReservRepresentedBy('1'] := 13; ReservRepresentedBy('s’') := 0;
698 if eof(input)  then goto 1 808 ReservRepresentedBy('K'] := 0 ReservRepresentedBy(*L'] := 15;
499 else OpenLine 809 ReservRepresentedBy(‘N'] := 15;
700 end 810 ReservRepresentedBy('N'] := 135; ReservRepresenteddy('0'] := 0;
m end;” 1331 ReservRepresentadBy('P'] := 15; ReservRepresenteddy('e’] := 0;
702 advance 812 ReservRepresentedBy('R'] := 16; ReservRepresentedBy('s'] := §;
03 33 ReservRepresentedBy('T') := 6;  ReservRepresentedBy(‘'V’] := 14;
T04 else 814 ReservRepresentedBy['V'] := 10; ReservRepresenteddy('vw'] := §;
705 fch='( 815 ReservRepresentedBy['X'] := 0;  ReservRepresenteddy('Y'] := 13;
706 Then 816 ReservRepresentedBy('Z'] := 0; reserved(1] := smpty;
7 in 817 reserved(38] :* empty; reserved(39] :» eapty;
708 advance; 818 reservedl40] := empty;
709 if ch = ' 819 {} ch := 'A' { prevent cpth:lxiu] ‘ami* to empty - eqihbu; 1
710 then 820 reserved[14] := "AND ';  reserved{29] := 'ARRAY I
m in { comment } 821 reserved(33) := 'BEGIN ';  reservedl 5] := 'CASE N
mn2 ance; 822 reserved(12) := 'CONST ';  reserved(13) := 's1v ]
713 repeat 823 reservedl 2] := '00 ';  reservedl 6] := 'DOWNTO ',
714 while ch © '»* do 824 reservedl 4] := 'ELSE ‘s reserved( 3] := ‘END ';
ns m%g - 825 reserved(19] := ‘FILE ';  reserved(32] := ‘FOR '
716 if eotn(input) 826 reserved(36] :s 'FUNCTION °;
e Then 827 reservedl 71 := ‘G070 *'{ to xref gotos set to empty };
718 repeat 828 reserved(30) := 'If ';  reserved(28] := ‘IN '
ne CloseLine; 829 reserved(35) := °‘LABEL ';  reserved[18] := 'MOD ';
720 if eof(input)  then goto 1 830 reserved(31]) := 'NIL ';  reserved(22] := "NOT '
721 ‘else OpenlLine 31 reserved(17] := ‘OF i
722 wntil not eoln(input) 832 if otherwise becomes reserved then flush left the next. )
723 else advance 833 reserved( 91 := ' OTHERWISE®
4 end; 3% { mticipatx.n; the revised standard };
725 asdvance 835 reserved(16] := ';  reserved(21) := ‘PACKED ¥
726 until ch 2 ")°; 836 reserved(24] := 'PIOCEMRE *;  reserved[37] := 'PROGRAM 3
727 ance 837 reserved(20] := 'RECORD ';  reserved(26] := 'REPEAT i
78 end 338 reserved[15] := 'SET ‘s reserved[23) := ‘THEN '
729 end 839 reservedl 8] := ‘70 ';  reserved{10] := 'TYPE '
730 else 840 reserved(34] := 'UNTIL ';  reservedl27) :* 'VAR 3
1 ond; 841 reserved(113 ;= *WHILE ';  reserved(25] := WITH "
32 Closeline 842 end { initreserved };
733 end; 843 -
734 1: { "terminate scan on eof while processing comment } 84d procedure InitStates;
735 end { scan }; 845
736 846 in
7 {$Y+ new segment } 744 NextStatelinout, truel := inout;
738 848 NextStateCinout, falsel := inurky;
739 procedure initislize; 849 NextStatelinwrkl, true) := wrklout;
740 - 850 NextStatelinwrkl, falsel := wrklwrk2;
741 procedure InitLetdig; 851 NextStatelurkiout, true) := wrklout;
142 852 NextStatefurkiout, falsel := wrkiout;
743 const 853 NextState[wrkiwrk2, true) := wrk2out;
744 RintharOrd = 0; 354 NextStatefurktwrk2, falsel :3 wrkurki;
745 { ordinal of minimm character } 855 NextStatelwrk2out, truel := wrkZout;
%6 DefaultMaxCharOrd = 64; 856 NextStatelwrk2out, falsel := wrk2out;
747 { BCD = 64 & ASCII = 127 § EBCDIC = 255 } 857 NextState[wrk2urkl, truel := wrkiout;
748 858 NextStatefurk2wrkl, falsel := wrklwrk2; state := inout;
749 var 359 end { initstates };
750 - i, 360 -
751 RaxCharOrd: integer; 861 {SY+ new segment |}
;:g ch: char; 862

863 rocedure InitPredefined;
754 procedure InitChrVal(StartChar, endchar: char; aval: integer); 864 frocesure
755 845 var
756 var 866 ch: char;
757 LcChar, 867
758 ucChar: char; 868 begin
759 869 for ch := '0' to '9' do PredefRepresentedBylch] := 0;
760 %_ 870 PredefRepresentedByl'AT) := 15; PredefRepresentedBy('8') := 9;
761 or LeChar := StartChar to endchar do 87 PredefRepresentedByl'C'] := 11;
762 in 872 PredefRepresentedBy('0'] := 19; PredefRepresentedBy('e'] := §;
763 rCatagoryllcChar] := icLetter; 873 PredefRepresentedBy('F') := 3; PredefRepresentedBy('s'] := 0;
764 ChrSortOrdCicChar] := aval; ucChar := UpperCase(lcChar); 874 PredefRepresentedBy('H'] := 0; PredefRepresentedBy('l'] := 3;
765 ChrCatagorylucCharl := ucLetter; 875 PredefRepresentedBy('J'] := 0; PredefRepresentedBy('X'] := 16;
766 ChrSortOrdlucChar) := avat - 1;  aval := aval + 2; 876 PredefRepresentedByL'L'] :x 13; PredefRepresentedBy('n'] := 1;
167 end 877 PredefRepresentedBy('N'] := 19; PredefRepresentedBy(‘0'] := 0;
768 end T initchrval }; 878 PredefRepresentedBy('P'] := 18; PredefRepresentedBy(*a’] := 0;
769 879 PredefRepresentedBy('R'] := 0; PredefRepresentedBy(’s'] := 1S;
0 begin { initletdig } 880 PredefRepresentedBy(*T'] := 0: PredefRepresentedBy(’y*) := 17;



PASCAL NEWS #17 MARCH, 1980 PAGE 45

o PrecethepresentedyEar] = 0:  Prodeftemresencedtycnd 1 07 w2 =
883 Predeffepresenteddy('2'] :x 0; : i i conta name
b recafinedt 23 o= waptys - predefinedt 33 on smpers e ) e ot ( coneains file nme puct |
as predetined4z] := emoty;  predetined(s3) i* eapty; 995 8 T e s
pr i 1. ; i
287 Dredet inedlss] 1= emptys  predetinedlé7] in empty: o i) gty crafreectiy > eralt 9 g
828 predefined(483 :* empty; = ety e 8 aTj] := fspectid;
s peiieas namlj] := fspec
890 t ;rtd:ﬁnedBB i= " optmnu'q fapet to ampty - et 3 28 0 W o ..'. o' go
891 predefined(40] := 'AICYAN '; :% 4 ”, (4232 90 (3 > 18> then to 2
892 predefined(35] := 'BOOLEAN ' 1002 i H .
893 predefined(15] := 'CHAR " o ;
394 predefined(14] := *CHR '; 1004 i end' g
895 predefined(29]) := 'COS *; 1005 o o
896 predefined{31] := 'DISPOSE ' 1006
897 predefinedf11] := 'EOF '; . 1007
898 predefined(28] := 'EOLN ' 1008
% predefined(26] := ‘EXP " 1009 {} procedure reeset (var f: text; var fspec: FileNames);
edefined = ! ; i :
501 DredetinedC 8) 1= NPT 11 bredefinedl10) = INTeGER G d01 (]
902 T ined34) ;= o ;] °"¢:f’-"‘d[;‘;’].". INTEGER  '; 1011 {} dev:devs; dir: dirs; nam: nams;
903 predefined(32) := 'NEW j predetinedtid i TNt oS beg
904 predefined[22) := ‘ORD “ ; : o o :
905 et inedC38] o= ‘oACK G predefined(6) := *QUTPUT 14 () SplitFileSpecification (fspec, dev, dir, nam);
08 et ined(2] 1= *Pace .f 1015 {} reset (f, nam, dir, dev);
907 predefined(4t] := 'PRED '; :g:; t s0d;
908 predefined{21] := 'PyUT '; 1018
909 predefined(23] := 'READ ' 1019
:11? predefined(25] := ‘READLN ' 1020
predefined(1?) := ' : H ellane:
4 prmfideﬁ] =: ':::ITE :: predefined(5] := 'RESET '; 1021 {) procedure reewrite (var f: text; var fspec: Fil 8);
913 predefined(24] := 'ROUND  '; b
914 predefined(37) := 'SIN ' i —aem
915 e imedt18) 1e 'aan ': 1026 {} videvs; dir: dirs; nam: nams;
sl predefined(193 := 'SQRT ’; 1% i in
predefined(30] := * *; H 1
e D eetinedl 97 is 's'l.llc,: ; ::x;j:::gg]-.'ﬁxf 'E 1027 {} SplitFileSpecification (fspec, dev, dir, nam);
o9 e tinedL39] = *MBACK v : RUNC ; 1028 |} rewrite (f, nam, dir, dev);
920 predefined(20] := 'WITE  '; tow U =Y
921 predefined(36] := ‘WRITELN *; 103
922 d | initee " 1 {} procedure 6CML(var Line: LineBuffer; var len: integer);
posd od edefined }; 1032 {} extern | return comsand line in Upper case };
924 {SY+ new segment } b
928 :g;; {} procedure quit;
926 in { initperfect ) beg
927 nitReserved; I ; i ined; IR L
<44 o { i.nianiect n;t;sutes, InitPredefined; 1037 {} writeln(tty, * Errors in Comsand Line');
929 od 1038 (} for c¢alptr := 1 to callen do write(tty, callinelcalptrd);
930 1} procedure Comectfiles; 1039 {) Witeln(tty); writeln(tty);
031 P 1040 {} writeln{tty, ' <output file>2<input file> [<optons>1*);
_ w2 () const 1041 {} writeln(tty, ' <options> ::=*);
93 0} R ecLeng = 32; 1062 {} ur?teln(tty, 't L capitalize identifiers,’);
936 1043 {} ur:»tel.n(tty, rob display program,');
g 0 . :m H ur}:etn:tty, : | ot cross ref predefined ids.,’);

0 pe favecs = o . writeln(tty, - terminal output (ids. only),');
ot 0 Filesoecs = .::.g a ;;p::L::']c:f char; 1066 {} vrfteln(tty, 1+ ¥=132 yidth of output.'); uri"in(;ty);
98 et packled I L 0'.“". 1047 {}) writeln{tty); writetn(tty, * HALT'); halt
939 {} FileNames = array 21 ;; char; o U sd it s
%0 (}) devs = array [1 53 oF char; 1050 p
9%1 H dirs = array 01 :: 93 oF char; :gss? () procedure MextClach;

:g nams = array [1 .. 187 of char; 1052 {} begin
"% () var 1053 {} 17 colptr >= callen then quit; cmiptr := calptr + 1;
us (] fspec: Filespecs; ool Y] e Al neleatotr R | ¢ '
::g 3 flen: 0 .. FSpo;Leno; ;gssz 0 end { e b
colptr: 1 ., 80;
ws () pi 944 1057 {} procedure getfspec(inputOutput: integer; DefaultExtension: extension
%9 {} c.df.h: char; :gss: 0 d
g? {} botfound: Boolean; 1060 (} procedy: ;
932 {} pos: integer; 1061 e getnexts
bt 1062 {) m
951 1063 {} flen >= FSpeckeng then quit;
m {} procedure SplitFileSpecification (fspec: FileNames; :z; H ::s:::ﬂﬁa' Outoutd Lt Puoalch;  tlen = flea t 1
3¢ 8 webel 2 var dev: devs; var dir: dirs; var nam: nams); 1066 {} end { getnext };
958 ] 1067 -
959 {} var e U in ( Jetfepec )
%0 {} T Trt..3% g1 .19 o T Found - "
Jor: H :g;? 8 flen := 1; Dotfound := false; ’
% 0 in ) while CalCh in C*A® .. *Z%, 0" .. '9*, *z', *[', '3°, *.', '
o =, . ; if callh = ' th ; i
sot 4 i " s B i en repeat getnext; until CmlCh = ']
966 {} for i =1 %0 32 do :g;s H bei,?"
:: {) i opetil ra then 1073 H m;_m Dotfound then DotFound := CalCh = '.’; getnext;
¢ : i - . ;

ford } speclil := CHR (ord{fspecCil) - 408); 1078 {} it (flen > 1) and (not DotFound) then
Mo e N A
971 {1} while not (¢ il in C'2* ; i oo
AR £ ot speclil in L'z, *C°, *.', '] and (i < 32) do 1081 {} speciInputOutput] [(flen] := DefaultExtension(posl;
m ]y '
974 {} end; s
o5 5 :g:; {}  end { Getfspec };
976 {} if tspeclil sat i i
o by clil = then { contains a device name } 1086 {} in { connectfiles }
s i) e § 12 1 to 4 do :m {} (colline, callen); CalCh := callinel1]; celptr :s §;
m 8 T3t j <= S then dev(jl := fspec(il; 1089 H ::ltmc;:c:.g"-‘ . ;o rttaem e eaten”

=iy while NextClmCh; hit L ‘o ;
w0 T 109 {} getfspec(l, *.LST")7 ¢ hile Calth = * 7 do Nextclach;
8 (] else i 109 (1 It flen =9 :
oas H :gzzs H 't.hen .cin writeln(tty, * Mo Output File Specified”); aquit; end;

- . ' ) Nextclnch; while Caith = ' ¢ ;

% 8 it ::pcch] 2 'C" then { contains a directory part } 109 {}  getfspec(2, 'l."li'f.'); he g0 NexteLach;
986 () ] = 1; :m H ‘Fonf ety
o7 {1 l i in writeln(tty, * No Input Ffile Specified®); it; end;
98 {} ..’.5.??“) i fapeclil; :097 f}  Teesetlinput, fspecl2)); reewriteloutput, fsptc[‘i); R
s () FEC i e S 18:: 8 while ((ul;'m.' < catlen) and (tmith < ‘(")) do MextCimth;
990 (} untit (i > 32) or (§ > 9 or (dirlj=11 = *1*); 1100 {} %-Mft-“h e




PASCAL NEWS #17 MARCH, 1980 PAGE 46
110t {} repeat 130 {} then LineLength := defaultipiidth;
1102 {} “Wextciach; 13} od
103 {} whilie (CmlCh = ' ') or (CalCh = *,') do MextCimCh; 1132 (} ond;
1104 {} T Catch in C'C', ‘0T, 'PY, TV, W 1133 {} 1_,«\3_' ,
1105 (} Then 1136 {} until Catch = *3°;
1106 {1} “Begin 1135 {} end [ connectfiles };
1107 i} CedCh := CmlCh;  NextClmCh; 1136
1108 {; case CmdCh of 1137 begin { initialize )
1109} TC': ALLCapitals := CalCh = '+f; 1138 Currentli ber :* 0; PageNuaber :3 0;
1110 {} ' DisplaylsActive := CmlCh = *+¢; 1139 LinesOnPage := LinesPerPage; AllCapitals := faise;
M1} doPredefined := Catlh = '+*; 1140 DisplayIsActive := true; DoPredefined :x false; FreeStgPtr
1112 {1} T 1141 freeltewPtr := nil;
1113 {} Begin 1142 for ItemCnt := T to 80 do cmliinelItemlnt] := * *; c-llfn = 0;
1M14 {} terminal := CmiCh = '+'; 1143 Ttemtnt := 0; terminal := false; empty := ;
1115 {} if terminat 1144 for HshTblIndx := O to HashTolSize - 1 do
116 {} Then LineLength := DefaultTerwinalwidth; 1145 uashvnutushmllnn.kermd- = 0; 3
1117 {} DisplaylsActive := not terwinal; 1146 InitLetdig; 1nitPerfect; LineLength := DefaultlpWidth;
1118 {} end; - 1147 todasy := empty; now :T empty;
1119 (} W 1148 (1  ConnectFiles; date(today); time(now);
1120 {} be in 1149 wrk2active := false;
1121 {} (CalCh = *:°) or (ClCh = '=')  then NextClaCh; 1150 end { initialize };
1122 (} LmeLtnqth = 0; 1151
1123 |} while CaiCh in teor o '9'] do 1152 {SY+ new segment |}
1126 (} begin - 1153
1125 {} LineLength := Linelength # 10 + ord(CaiCh) - ord 1154 begin { xref }
126 () 0'); 1155 ~ writein(tty, '~ CrossRef (80.2.1)'); initialize;
127 (} NextClmch; 1156 QutputSection := Listing; scan; OutputSection := idents;
1128 |} end; 1157 OumpTables; writeln(tty, °- End CrossRef'); writein(tty, ' ');
) 1129 {} if TineLength < (DefaultTerminaliidth - 8) 1158 end { xref }.
1 {* Purpose: 84 if uneq then search := 0 else search := i;
2 Library routines for string manipulation. 85 end;
{ 3 86  end T search is
4 * Author: 87
5 Barry Smith 83 procedure readstring{var f: text; var s: string);
6 Oregon Software 89
7 2340 Sw Road 90 begin
3 Portland Oregon 97201 9N ctear(s);
9 92 with s do
10 * Method: 93 uhile (not eoln(f)) and (len < stringmax) do
" Uses fixed length arrays of characters. 9% begin (en := len + read(f, chllenl); end;
12 95 readin(f);
13 * Description of Routines: 96  end { readstring };
1“% Len - tion. Returns string length. 97 --
3 Clear —— Blank fills a string. 98 procedure writestring(var f: text; s: string);
16 Concatenate — Appends one string to another. 99
17 Search — Function. Returns substring position. 100 var
18 Readstring — Read a string fram a file. 101 T 1: integer;
19 Writestring -— Write a string to a file. 102
20 Substring — Extract a substring fram a string. 103 begin for i :* 1 to s.len do write(f, s.ch(il) end { writestring };
21 Delete - Remove part of a string. 104 -
g Insert — Insert a string into a string. 105 procedure substring(var t: string; s: string; start, span: integer);
106
26 In several routines error processing is left for the 107 var
25 user to provide, 108 it integer;
26 109
27 * Computer System: 110 begin
;-: UBC POP 11, OMSI Pascal version 1. m T span < 0 end
112 then begin span := - span; start := start - span ;
0 v 13 T start <1 =
n 14 Then begin span := span + start - 1;  start := 1 end;
32 const 15 i1 start * span > s.len + 1 then span := s.len - start ¢ 1;
33 stringsax = 100; 116 T span <= 0 then clear(t)
3% 1"? else
35t 138 in
36 string = record 119 or 7 :* 1 to span do t.ch{i] := s.chistart + i -~ 1];
37 en: 0 .. stringsax; 120 or i := span + 1 to stringmax do t.ch(i) := ' *;
38 ch: packed array [1 .. stringsax} of char 121 T-Ten := span;
39 end; 122 end;
p4 13 end T swpstring );
41 function len(s: string): integer; 124 -
42 125 procedure delete(var s: string; start, span: integer);
43 begin ten := s.len end { len }; 126 -
“ 127 var
45 procedure clear(var s: string); 128 T 1, Limit: integer;
‘g - 129
& var 130 begin
48 TV: integer; 131 —-?7-3901 <0
49 132 Then begin span := - span;  start := start - spen end;
S0 in s.len := 0;  for i := 1 to stringmax do s.ch{i} := ' * 133 THaTt™:= start + span;  if start <1  then start := ‘l;
51 clear }; - 134 if Limit > s.len + 1 then limit := s.len + 1;
52 135 span := Limit - start;
53 procedure concatenate(var s: string; t: string); 136 if span > 0
6 137 then
55 var 138 TBegin
56 77, j: integer; 139 ,or i:= 0 to s.len - Limit do
57 140 “s.chlstart + i := s.chllimit + i1;
58 ﬁ.}'l 141 for i := s.ien - span + 1 to s.len do s.ch{il := ' ';
59 s.len + t.len > stringmax 142 s.len := s len =~ span;
60 then j := stringmax - s.len { overflow } 143 end;
61 e j = tolen; 144 end T delete J;
62 For i :=1¢to0j do s.chis.len + i) := t.chfil; s.len := s.len+ j; 145 —
63 m concatenate 146 procedure insert(var s: string; t: string; p: integer);
84 wr — -
45 function search(s, t: string; start: integer): integer; 148 var
66 149 i, ji integer;
67 var 150
68 T3, 5: 0 .. stringmax; 151
69 uneq: bootean; 152
70 153
7 begin 154 if (p>0) and (p <= s.len + 1)
72 77 start <1 then start := ¥; 155 then -
73 JT (start + t.len > s.len + 1) or (t.len = 0) then search :> 0 156 begin
74 else - 157 17 s.len + t.len <= stringmax thtn s.len := s len + t.len
75 in 158 'Tse s.len := stringmax { overflow
76 T i=x start - 1; 159 For i := s.len downto p ¢ t.len do s.chh] = s.chli - t.len);
- 7 repeat 160 Ts.ten <p+T.len then j := s.len
78 Ti=i+1; ] 0; 161 else j :xp + t.len - 17
79 repeat j i= j + uneq = tuchljd <> sechli ¢+ - 13; 162 for 1 :xp toj do s.ch(il 1= t.ehli - p + 1];
80 wntil uneq or (j = t. 163 end - -
81 Ten); 164 else { non-cont iguous str
82 untit (not uneq) or (i = s, 165 end T insert }; i9 i )
83 Ten - t.len + 1);

*****************



T aee

- Tt -

PASCAL NEWS #17 MARCH, 1980 PAGE 47

1 {* Purpose: m begin
2 Program computes Hankel functions of the first and second 112 w.re :3 y.re *+ v.re; w.im :® y.im ¢ v, i
3 kinds for an integrel order and complex argument. 113 end { add |;
& 114
S * Author: 115
6 Q.M. Tran, School of Electrical Engineering, University of New 116 procedure sublu, v: cosplex; var w: complex);
7 South wWales. 17
8 118 begin
9 * Method: 119 W.r® T y.re - v.re; w.im :* y.im - v.im
10 Hankel functions of a required order are calculated fram 120 end { sub j;
11 corresponding Bessel functions of the first and second kinds. 121
12 A backward recursive scheme is used in computing Bessel function 122
13 of the first kind for a number of orders. 123 procedure sult(a: real; z: complex; var w: complex);
14 These are then sumsed to give the two orders 0 and 1 of 124 %‘mﬁﬁies a real with a complex }
15 Bessel function of the second kind, which in turn serve as 125
16 starting point for finding a higher-order Bessel function of 126 begin
17 the second kind. 127 W.lre T 3 % z.re; w,im 1T 2 * 2.i8
18 ‘ 128 end { mult };
19  * Description of parameters: 129
20 p - integral order, where —max <= p <= max and max = 500. 130
21 z - camplex argument. 131 procedure product(u, v: complex; var w: complex);
22 fnl ~ Hankel function of the ‘irst kind. 132
23 fn2 - Hankel function of the second kind. 133 begin
24 134 w.re = (u.re * v.re) = (u.im * v,im);
25 ¢ Input: 135 woilm = (u.re * v.im) + (u.in * v.re)
26 Program reads in an integer (p) and two real numbers (real and 136  end { product };
27 imaginary parts of z). 137
28 138
29 * Qutput: 139 procedure quotient(u, v: complex; var w: complex);
30 Arguments and values of the Hankel functions of the first 140
n and second kinds are retuxrned. 141 var
32 Warning message is given if any parameter exceeds specified 142 vr, vi, a, b, x1, x2, yl, y2, root: real;
33 linits or is outside range. 143
34 144 begi
35 + Limitations: 145 vf = abs(v.re); vi := abs(v.im);
36 - 500 <= p <= 500 , 146 root :* sqrt(2.0) * sqrt(vr) * sqrt(vi); & :3 vr + vi ¢ root;
n 1.08-5 <= modulus of z <= 377.0 , 14? b = vr + vi - root;
38 Imaginary part of z <= 50.0 , 148 if <2 = 0.0) or (b = 0.0) then
39 P must not be much greater than the modulus of z, otherwise 149 in
40 exponent error in the computer (PDP 11/70) will occur. 150 writeln{'¥: dividing by 0 in procedure quotient');
41 151 stop { Exit to terminate program };
42 * Computer system: 152 end;
43 Progras was run under UNIX Pascal (Berkeley - Version 1.2, 153 x¥ = u,re / a; x2:=v.re/ b; yl:=u.im/ a;
7Y May 1979) on IEC PP 11/70. 154 y2 :2 v.im /7 b; w.re := x1 % x2 ¢ y1 * y2;
45 15% u.i® = x2 ¢ y! - xt & y2
4  * Accuracy: 156  end { quotient };
&7 Computed results were checked against published values over the 157
L following ranges: 158
49 - 100 <= p <= 100 and 159 procedure ccos(z: complex; var c: cowplex);
50 real argument z = 0.1 - 100.0 , 160 i Cosine of a camplex }
51 - 1«¢=p<a] and 164
52 camplex argusent z = (0.01,5 deg.) - (10.0,90 deg.) 162 var
s3 163 ep, ea, p, n: real;
56 They were found to be accurate to at least 10 significant digits. } 164
L H] 165 begin
56 166 ep = exp(z.im); em :21.0/ep; p:iZep+tem; & :™ceu - ep;
57 progras hankel(input, output); 167 c.re := 0.5 * p * cos(z.re); c.im := 0.5 * a * gin(z.re)
58 168  end { coos };
59 Llabel 169
60 T { Exit to terminate program }; 170
61 171 procedure polar(u: complex; var v: complex);
62 const 172 %'m a camplex into polar fomm }
63 Tia = S01; 173
(-3 sax = 500; 174 const
65 tpd = 0.6366197723675813 { 2.0 by pi }; 175 BT = 3.1415926535897932;
66 euler = 0,.5772156649015329; 176
67 177 Egg
68 t 178 3f (uere = 0.0) and (u.im = 0.0) then
69 comptex = record 179 begin
70 re, im: real 180 writeln('¥: conversion of 0 in procedure polar');
n end; 181 stop | Exit to temminate program };
7 182 end;
73 var 183 if Tu.re = 0.0) and (u.im © 0.0) then
% ~1,%,n, ., L, p: integer; 184 begin -
75 z, v, v, ¥, yo, y!, y2: complex; 185 Vere := maglu); v.im := pi /7 2.0
76 fn1, fn2, sua, esum, osum, norm, zero: complex; 186 od
n f: array (0 .. Lis) of complex; 187 else
78 188 begin
9 189 v.re := gaglu); v.im := arctanlu.im / u.re)
80 procedure stop; 190 end
81 191 end | polar };
82 in 9 T
a3 to 1 { halt } 193
34 ond [stop }; 194 procedure cln(z: complex; var c: complex);
s 195 TRGBEAl logaritm of a complex |
196
87 procedure cread(var z: complex); 197 var
88 198 p: complex;
89 begin 199 .
90 read(z.re, z.im) : 200 g:g_w_rll_
91 end { cread j; 0 polar(z, p); c.re := Inlp.re); c.im := p.im
92 202 end { cln };
93 203
94 procedure curite(var z: complex); 204
95 - 205 function order(z: complex): integer;
96 in 206 T Gives a starting and even order for recursive camputation }
97 writeln(' (', z.re, ',', 2.70, ")) 207
98 end { owrite |; 208 var
] 209 a: real;
100 210 »: integer;
101 function mag(var z: complex): reat; m
R the modulus of a complex number } M2 in
103 213 a = nag(2);
104 begin 214 ifa<0.1 thens :=10
105 := sqrtisqriz.re) + sqr(z.im)) 215 else
}g; end { mag §; 216 Egl_ 2<2.0 thenws :=28 else m :* round(1.2 *+ & + 48.0)
217 :
108 218 order :x u; if odd(e) then order := = + 1

:?z procedure add(u, v: complex; var w: cosplex); 219 od { order };




PASCAL NEWS #17

221
222

225

250
251
252
253

rocedure sign{u: complex; var v: co.plél);
%m the sign of a cosplex }

begin
v.re :T - u.re;
end { sign };

v.im 1z = y.im

rocedure check(z: complex);
to see if the function argument is outside ramge }

var
a3, b: real;

bgin
:= abs(z.re); b := abs(z.im);
1f ((a < 1.0€ - 5) and (b < 1.0€ - 5)) or
(b < 0.0) and T6 < 1.0 - 5)) then
in
write('¥: small argument which causes exponent error = ');
cwrite(z); stop { Exit to temminate program };
end;
if b > 50.0 then
beg1n
write('M: argument with imaginary part outside range = *);
curite(z); stop { Exit to terminate program };
end
and T"Check J;

rocedure hankel12(u, v: complex; var wl, w2: complex);
’i—m Bessel functions of the First & second kinds to give Hankel
functions }

begin
wi.re := y.re - v, in;

wi.re %= y.re + v.im;
end { hankell2 },

wi.im = u.im + v.re;
w2.im := y.im = v.re

begin { Bankel }

read(p); n := absip);
it n>= Lim then
in

writeln('v: required order ', p: 6,
max: 4, ',', max: &, *)');
stop { Exit to terminate program };

end;
cread(z);
check(z) { If z is outside range, exit to terminate program };
m ;= order(z);
if m>= Lim then
in
writeln('W: starting order ', a: §,
' exceeds the specified maxisum', max: 4);
stop { Exit to terminate progras };
end;
zero.re := 0.0;
:= zero;
:= 0.0;
for i := m downto 1 do
in -
quotient(f(il, z, w); wult(2.0 « i, w, W);
sublw, fLi + 11, f0i - 1)

' is outside the range (', -

zero.im := 0.0;
flm + 11 := zero;

SUB :Z Zero;  esum = zero;
flml.re := 1.0e - 30;

MARCH,

358

359 1:

1980

for i := 1 to k do add(sum, f[2 *» i1, sum);
2dd(sum, (07, norm)

sult(2.0, sum, sum);

end
else
begin
for i =1 tok do
bcgin
1f odd(i)  then add(osum, f{2 ¢ i], osum)
else add(esum, (2 » i], esum)
end;
sublesum, osum, sum); mult(2.0, sum, sum);
add(sum, f(0], sum); ccos(2, u); quotient(sum, u, norm)
end;
for Vi=0tom do
T quotient (fTi1, norm, f(i1) { Bessel functions of lat kird };
esum :* zero; osum := zero; L :=1;
ifn=0
then

begin
E = - 1; weult(l 7 i, f2 » 1], v); add(esum, u, esum)
end;
ault(2.0, esum, esum);
u.re := u.re + euler;
mult(tpi, u, yo) { Yo };

sult(0.5, 2, Ww; cinlu, u);
product(u, fL01, u); sublu, esum, u);
hankel12¢(£L0], yo, fnt, fn2);

writeln; writeln; write(' function argument = *);
curite(2); writeln;
write(® Hankel fmction of the first kind and order 0 = ');
cwrited(fn1); writeln;
write(’ Hankel function of the second kind and order 0 = ');
curite(fn2); writeln; writein;
stop { Exit to terminate program };
end { Ho }
else

begin { Hn, where n <> 0 }
fori:e1tokdo
begin
L= ~=1; moltCt /i, fl2 ¢ i], u);
sub(fl2 » i - 1], fl2 *» i + 1], v);
add(osum, v, osum);
eng;
mutt(2.0, esum, esum);
u.re := u.re + euler;
ault(tpi, v, yoy { Yo };
quotient (L0, z, w);
mult(tpi, v, y9) (Y1 };
while i < n do
Forward recursion to compute ¥n, where a <> 0,1 }

add(esum, u, esum);
sultll /7 i, v, v);

sult(0.5, 2, v);

product(u, (01, v);
product(u, f{1], v);

sub(v, w, w); add(w, osum, w);
im=1;

elnlu, w;
sub(v, esum, v);

begin
quotient(y1, z, u); wmult(2 * i, u, u); sublu, yo, y2);
yo :xyl; yl:=y2; i:=i+;

end { Porward recursion };
it m < max then for i :x m + 1 to wax do fli] := zero;
hankel12(¢n3, yT, T, fn2);
if (p < 0) and odd(p) then

begin
sign(fnl, tn1); sign(fn2, fn2)
end;
writeln; writeln; write(' Function argument = ');
curite(z); writein;
write(* Hankel function of the first kind and order ', p: 4,
"z n);
curite(fnl); writeln;
write(* Hankel function of the second kind and order ', p: &,
ey,
cwrite(fn2); writeln; writeln;
end { Hn };

360 end { Hankel }.

AR AN A A A I AGI A Al A g

PAGE 48



R T —

/
VOO ~NO VL WA -

PASCAL NEWS #17

MARCH, 1980 PAGE 49

{* Purgose: 11
Program computes a Bessel function of the first kind for an 112
integral order and complex argument. 13

114

* Author: 115
Q.M. Txan, School of Electrical Bxjineering, University of 116
New South Wales. 117

118

* Method: 119
Backward recurrence equation is employed to campute the function, 120
starting at a higher order for which the Bessel function has a 121
anall value. The starting order is calculated using an 122
empirical formula. when the function argument is mainly real, 123
normalization is to unity. If it is mainly imaginary, 124
normalization involves cosine of the camplex argument. ]' g:

* Description of parameters: 127
p ~ integral order, where -max <= p <= max and max = 500 128
z - complex argument. 129
fn - Bessel function of z and order p. 130

131

* Input: 132
Progras reads in an integer (p} and two real mumbers 133
(real and imaginary parts of z). 1:;;

1

* Qutput: 136
Argument & value of the Bessel function of the first kind 137
are returned. Warning message is given if any parameter 138
exceeds specified limits or is outside range. 139

140

* Limitations: 141
~ 500 <= p <= 500, 142
1.0e-5 <= modulus of z <= 377.0, 143
Imaginary part of z <= 50.0. 144

145

* Computer system: 146
Program was run under UNIX Pascal (Berkeley - Version 1.2, 147
May, 1979) on DEC PDP 11/70. :2:

* Accuracy: 150
Computed results were checked against published values over 151
the following ranges: 152
- 100 <= p <= 100 and 0.1 <= modulus of z <= 100.0. 153
They were found to be accurate to at least 8 decimal digits. } 1;;

1
156
program bessell(input, output); 157
158
Label . 159
T{ Exit to terminate program }; 1:(1)
const 162
Gia = 501; 163
nax = 500; 164
165
t 166
complex = record 167
re, im: real 168
end; 169
170
var 17
i, k, n, &, p: integer; 172
2, ¥, fn, sum, esum, osum, norm, zero: complex; 173
f: arcay (0 .. Lin] of complex; };g
176
procedure stop; ;I;:
begin 179
to 1 { halt } 180
end { stop }; 181
182
183
procedure cread(var z: complex); 184
185
begin 186
read(z.re, z.im) 187
end { cread }; 188
- 189
190
procedure curite(!_a_t z: complex); 19;
19
begin 193
writeln(' (', z.re, ',', 2.im, *}") 194
end { cwrite }; 195
196
197
function maglvar z: complex): real; 198
T Computes the modulus of a camplex number } 199
200
begin 201
mag := sgrtisaqr(z.re) + sqr(z.im)) 202
end { mag }; 203
204
205
procedure add(u, v: complex; var w: complex); ggg
begin 208
W.re Iz y.re + v.re; u.im 1= y.im ¢+ v.im 209
end {add }; 210
21
212
procedure sublu, v: complex; var w: complex); g:z
begin 215
W.re IT u.re = v.re; W.im = u.im -~ v,ime 216
end { sub }; 217
- 218
219
procedure mult(a: real; z: complex; var w: complex); 220

{ Multiplies a real with a complex }

begin
w.re := a ¥ z.re; w.im 1% 3 * z2.im
end { milt };

procedure quotient(u, v: complex; var w: complex);

var
vr, vi, a, b, x1, x2, yt, y2, root: reai;

begin
vr := abs{v.re); vi := abs(v.im);
root := sqrt(2.0) * sqrt(ve) * sqrtlvi}; a := vr + vi ¢ root;
b := wvr + vi = root;
if (a = 0.0) or (b = 0.0) then
begin
writeln('¥: dividing by 0 in procedure quotient');
stop { Exits to terminate program };
end;
X1 := ure / 3; x2 :*vore/ b; yl :®u.im/ 8;
y2 := v.im / b;  w.re 1z x1 % x2 ¢+ yl * y2;
w.im 2= x2 ¥ yt - x1 # y2
end { guotient };

rocedure ccos(z: complex; var c: complex);
i Tosine of a camplex }

var
ep, em, D, m: real;

begin
ep := exp(z.im); em := 1.0/ ep; p:Zep+tem; @ :% em - ep;
c.re 1= 0.5 * p * cos(z.re); c.im :* 0.5 * m ¢+ sin(z.re)

end { ccos };

function order(z: complex): integer; .
] Gives a starting and even order for recursive computation }

var -
3: real;
m: integer;

begin
a := nagl2);
ifa<0.1 thenw:=10
else
Begin it a<2.0 thenm:=28 elsen := round(1.2 * a + 48.0)
end;

if odd(m)  then order := a + 1

rocedure sign(u: complex; var v: complex);
i Changes the sign of a complex }

begin
v.re := - y.re;  v.im 1T - u.ia
end { sign };

rocedure check(z: complex);
%m_to see if the function argument is outside range }

var
a, b: reat;

begin
a := abs(z.re); b := abs(z.im); .
if (@ < 1.0e = 5) and (b < 1.0e = 5)) or ((b <> 0.0) and (b < 1.0¢
- 5))

hen

begin
write('d: small argument which causes exponent error = ');
curite(z); stop { Exits tc terminate program };

end;

if b > 50.0 then

" begin
write('W: argument with imaginary part outside range = ');
curite(z); stop { Exits to terminate program };

I

end
end Tcheck };

begin { Bessell }
read(p); n := abs(p);
if n >= Lim then
“begin
writeln('W: required order ', p: 6, ' is outside the range (*, -
max: &, ',', max: 4, ")');
stop { Exits to terminate program };
#nd;
cread(z);
check(z) { If z is outside range, exit to terminate program };
m := order(z);
if = >= {im then
begin
writetn{'W: starting order ', @: 6,
' exceeds the specified maximum', max: 4);
stop { Exits to terminate program };
end;
ifn>xa
then
begin
writeln; writeln; write(' function argusent = ');
curite(z); writeln;
writeln(’ Bessel function of the first kind and order ', p: &,




PASCAL NEWS #17

221
222
223
224

zero.re := 0.0;
osum :® zero;

ts(0,00Y;
uriteln; writeln;

stop { Exits to terminate program };

zero.im := 0.0;
flm ¢ 1] := zero;

SUR 1 ZEro;  esum % zero;
flal.re := 1.0e - 30;

f{al.im := 0.0;
for | :% m downto 1 do
“Begin

quotient(f{il, 2z, w); wult@.0 * i, v, w);
sublw, t0i + 13, t0i - 1D
end;

k 3T @ div 2;
if abs(z.re} > 10.0 » abs(z.im)
Then

begin
;or i 1% 1 to k do aad(sum, f{2 « 1], sum);
*dd(sum, 107, norm)

end

sult(2.0, sum, sum);

{* Purpose:

Program computes a Bessel function of the second kind for an
integral order and complex argument.

Author :
Q.M. Tran, School of Electrical Bngineering, University of New
South Wales.

Mathod:
Initially, a number of Bessel functions of the first kind are
generated by backward recursion. These are then summed to give
the two orders 0 and 1 of the Bessel function of the second kind.
Using forward recurrence relation based on these two orders,
a higher order is calculated.

Description of parameters:
p - integral order, where -max <= p <= max and max = 500.
z - complex argument.
fn - Bessel function of z and order p.

Input:
Progras reads in an integer (p) and two real mumbers (real and
imaginary parts of z).

Output:
Argument & value of the Bessel function of the second kind are
returned. Warning message is given if any parameter exceeds
specified limits or is outside range.

Limitations:
- 500 <= p <= 500 ,
1.0e-5 <= sodulus of z <= 377.0 ,
Imaginary part of z <= 50.0 ,
p must not be much greater than the modulus of z, otherwise
exponent error in the computer (PDP 11/70) will occur.

Computer system:
Program was run under UNIX Pascal (Berkeley - Version 1.2,
May 1979) on DEC POP 11/70.

Accuracy:
Camputed results were checked against published values over the
following ranges:
- 100 ¢= p <= 100 and
real argument z = 0.1 - 100.0 ,
~1l<=p<=1and
complex argument z = (0.01,5 deg.) - (10.0,90 deg.).

They were found to be accurate to at least 10 significant digits.

progras bessei2(input, autput);

Label
T Exit to terminate program };

const

(im = S01;

1

sax = 500;
tpi = 0.6386197723675813 { 2.0 by pi };
euler = 0.5772156649015329;

complex = record
re, im: real
nd;

var
pALS

i, k, n, s, L, p: integer;

2, u, v, w, yo, y1, y2: complex;

fn, sum, esum, osum, norm, zero: complex;
t: array (0 .. Lim] of complex;

procedure stop;

begin
oto 1 { hait }
end { stop };

procedure cread(var z: complex);

begin
read(z.re, z.im)
end | cread i;

Erncedure cwrite(var z: complex);

begin
writeln('(', z.re, °,°, z.im, ")")
end { cwrite };

function mag{var z: cospiex): real;

Computes the madulus of a camplex number }

begin
mag := sqrtisqr(z.re) + sqr(z.im))
end { mag };

MARCH, 1980

9
260
261
262
243
244
245
246
247
2468
249
250
251
252
253
254
255

100
101
102
103
106
105

PAGE

stise
=N
or i := 1 to k do
“hegin
if odd(i} then add(osum, f(2 * {], osum)

tlse add(esum, 72 * i), esum)
end;

suf(;;m, osnum, sum);
add(sum, f[0]1, sus);

ult(2.0, sum, sum);
ceoslz, w); quotient(sus, v, nGrm)

end:
quo?;nt(f(nl, nore, fn);
if (p < 0) and (0dd{p)) then signi{fn, fn); writeln; writetn;
write(*  “Tunction argument * '); cwrite(2); writeln;
write(*® Bessel function of the first kind and order ', p: &, ' =
b
curite(fn);
end { Dessell }.

writeln; writein; 1:

procedure add(u, v: complex; var w: complex);

pegin
Wel® 1= u.re ¥ v.re; v.im 3= u.im + v,im
end { add };
procedure sublu, v: complex; vac w: complex);
begin
¥are 12 u.re - v.re; u.im i u.im - v.is
end { sub };
rocedure mult(a: real; 2: complex; var w: complex);
% Multiplies a real with a complex }
begin
w.re :® 3 % z.re; w.im = a % z.is
end { mult };

procedure product(u, v: compiex; var u: complex);

begi
were = (u.re * v.re) - (u.im * v.ie);
w.is = (u.re * v.im) + (u.ie * v.re)
end { product };

procedure quotient(u, v: complex; var w: complex);

var
vr, vi, a, b, x1, x2, y1, y2, root: real;

begi

ve :3 abs(v.re); vi := sbs(v.im);

root := sqrt(2.0) * sart{vr) » sqredvi);

b := vr ¢ vi ~ root;

if (a = 0.0) or (b = 0.0) then

Thegin - -
writeln('¥: dividing by 0 in procedure quotient’);

{ Exit to temminate programs }

a = vr + yvi ¢ root;

stop;

af T u.re/ a; x2:3v,re/b; yt:su.ia/ a;
y2 = v.im / b;  w.re :x x1 ¥ x2 ¢y} & y2;
v.im 2T x2 * y) - x1 ¢ y2

end { quotient };

rocedure ccos(z: complex; var c: complex);
i Cosine of a complex }

var
ep, e, D, u: real;

in

e = exp(z.im); em 21,0/ e¢p;

c.re := 0.5 * p » cos{z.re); c.im :®
end { coos };

rocedure polar(u: complex; Nar v complex);
i Writing a complex into polar form }

const
pT = 3.1415926535897932;

ep v @8 BT em - wep;
0.5 « m ¢ sin(z.re)

begin
¥ (u.re = 0.0) and (u.im = 0.0) then
“Thegin - -

:

writeln('¥: conversion of 0 in procedure polar');
{ Exit to terminate program }

stop;

end;
it (u.re = 0.0) and (u.im <> 0.0) then
begin
vore 1= aaglu); v.im :z pi / 2.0
end
else
begin

v.re 17 maglu);

end
end Tpolar };

v.im := arctan(u.im / u.re)

procedure cln(z: complex; var c: complex);
{ NMatural logaritim of a complex }

var
p: complex;

begin
polar(z, p);
end { cln };

c.re := in(p.re); c.im := p.is

50



A g

PR I S

o B e e S

oy P e e -

PASCAL NEWS #17 MARCH, 1980 PAGE 51

198 function order(z: complex): integer; 267 zero.re := 0.0; zero.is := 0.0,: sum = x?ro; c:m :S zero;
199 T Gives a starting and even order for recursive camputation } 22:: ::\5 ‘: x:na,o fim + 1] := zero; f(al.re := 1.0e - 30;
.im = 0.0;
582 var 270 for i := m downto 1 do
02 Ta: reat; 4 B ent(fLil, 1, W  WLE@.0 % i, v, Wi
s i H 2 3 H - 4
20 #: integer; s subtu, 03 + 13,7105 = 1D
205 begin g; T
206 8 1= mag(z); N — ‘, 10.0 + abs(z.im)
207 if 3 < 0.1 then m :=10 276 if abs(z.re) . s(z.
208 else - 217 then
o s . . + 48.0) 278 qin
g% i:dmi 1<2.0 thenm:=28 clsen = rand(1.2 %2 ) 279 or i := 1 to k do add(sum, f(2 * i1, sum); wult(2.0, sum, sum);
21 order := m; if odd(®)  then order := » + 1 280 2dd(sum, t{0J, norm)
212 E'_d. { order }; 281 ond
4 282 else
215 procedure Sign(u: comples; var v: complex); R -
g}g { Changes the sign of a3 complex } 285 in - =
: 286 !? odd(i) then add(osum, L2 ¢ il, osum)
g:: Ee:—:e 1% uure;  v.iw % - u.im 287 else add(esum, (2 » il, esum)
220 end { sign }: 283 end;
2=e gn 13 289 sum,su, osum, sum); wult(2.0, sum, sus);
rzal 290 add(sum, f£0], sum); ccos(z, u); quotient(sum, u, nore)
222 291 end;
223 procedure check(z: complex); 292  for i :» 0 to m do quotient(f(il, norm, fLiD);
224 to see if the function argument is outside range } 293 { Bessel functions of lst kind }
225 294 eSum = zero; osum :* zero; L :3 1;
226 var 295 ifns0
22?7 s, b: real; 296  then
228 297 Begin { Yo }
229 begin 298 for i :* 1 to k do
230 a :* abs(z.re); b := sbs(z.im); 299 “Degin - -
231 it (Ca <1.0e ~5) and (b < 1.0e - 5)) or (b © 0.0) and (b < 1.0e 300 —.?T- - 1;  mult(l / i, f02 * i1, W; add(esum, u, esum)
232 -5 301 end;
233 then 302 -u'l_t'é.o, esum, esm);  wult(0.5, z, W); clnly, W)
234 in 303 u.re := u.re + euler; product(u, f(0], w); sublu, esum, u);
235 write('¥: small argument which casuses exponent error = '); 304 sult(tpi, u, yo); fn := yo; writeln; writeln;
236 curite(2); stop; 305 write(' Function argument = '); curite(z); writeln;
37 { Bxit to terminate pxogram } 306 write(® Besset function of the second kind and order 0 = ');
238 end; 307 curite(fn); writeln; . writeln; stop;
239 ifB > 50.0 then 308 { Exit to terminate program }
260 in - 309 end { Yo }
241 write('¥: argument with imaginary part outside range = '); 310 else
262 curite(z); stop; mn Degin { Yn where n <> 0 }
243 ( Exit to terminate program } 312 __,or i=1tokdo
2bh end 313 begin
245  end Tcheck }; 314 E T= - 13 sultCl 7 i, f02 ¢ i1, W; add(esum, u, esum);
246 315 sub(f{2 * i - 1], ${2 = i + 11, v);  muitll / i, v, V);
247 ( ) 316 add{osum, v, osum);
248 begin { Bessel2 317 end;
249 read(p); n := abs(p); 318 -u't?é.o, esum, sum); wmult(0.5, 2, W; cinlu, W);
250 it n >= Lim then 319 u.re := u.re + euler; product(u, 03, v); sublv, esum, v);
251 in 320 mult(tpi, v, yo);
252 writeln('VW: required order *, p: 6, ' is outside the range (', - 321 { Yo} product(u, f{il, v);
253 aax: 4, *',', max: 4, *)'); 322 quotient(f(03, 2z, w); sublv, w, v); add(w, osum, w);
254 stop; 323 sult(tpi, w, y1);
255 { Exit to terminate program } 324 fYl}) i::=1;
56 end; 325 while i < n do { Porward recursion }
57 cr’e'ﬂ'zz); check(2); 326 Begin
258 { If z is outside range, exit to terminate program } 327 quotien: y1, z, w); wult{Z * i, u, u); sublu, yo, y2);
259 ® := order(2); 328 yo :3 yl; yl::=y2; {i::=i+1;
260 if = >= lim then 329 end;
261 " begin 330 { Porward recursion }
262 writeln('W: starting order ', a: 6, 331 fn := y1; if (p < 0) and odd(p) then sign(fn, fn); writeln;
263 ' exceeds the specified saximum', max: 4); 332 uriteln; write(' Function argument = '); curite(z);
264 stop; 333 writeln;
265 { Exit to terminate program } 334 write(' Bessel function of the second kind and order ', p: &,
266 and; 335 s 0;
336 curite(fn); writeln; writeln
337 end;
38 (T
339 1:

340 end { bessel2 }.

AR AR AR AR AGR AR A gk ¢



sl ottt il el

ettt el sttt sttt el APl .

PASCAL

OVOBNORIUNS

NEWS #17

MARCH, 1980

PAGE 52

{* Purpoes: m { undefined } *
Library routines to mmmipulate character strings in Pascal. 1712 od
113 else ﬂg;_ p := avail; avail :» aveil®.next end;
* pthor: 114  end [ news J;

Judy M. Bishop, Computer Science Division,

Witmterstand, Johamnesbuxrg 2001, South Africa. 116 procedure di (p: chumkptr);
17
* Description of routines: 118 begin p“.next := avail; aveil := p; end;
StringInitialize — set up the free space list ... called first 119
and once. 120 procedure rewrites(var s: string);
StringBrroc — Internal error reporting routine. 121
News — Internal string allocation routine. 122 begin
Disposes — Internal string deallocation routine. 123 with s do
Rewrites — User callable. Initialize a string for writing. 124 " begin
Resets — User callable. Initialize a string for reading. 125 _"Tstart = nil
Length — User callable function. 126 Then begin news(start);  start™.next := nil; end;
Returns string's length. 127 Turrent :® start; position := 0; chunkno 1= ;
Sofs — User callable function. 128 length :2 0; status := uriting
True if at end of string. 129 end
Puts — Internal string character put routine. 130  end T rewrites };
Gets -~ Internal string character get routine. 131 - .
Qpens — User callable string creation routine. 132 procedure resets(var s: string);
Closes — User callable string removal routine. 133 -
Reads — User callable read string routine. 134 var
Weites - User callable write string routine. 135 T c: chunkptr;
Suppress -— User callable trailing blank removal routine. 136
Assign -- User callable string assigmment routine. 137
Compare — User callable function returning the 138
relationship between two strings. 139 _E%g
AlfaToString — User callable assigrment of alfa to string. 140 tltus = writing
CharToString - User callable assigmment of char to string. 141
142 E¥
An implementatjon of character string primitives using Pascal's 143 ength := length + position; ¢ := current”.next;
dyn-ic storage allocation facilities. The routines follow Arthur 144 current”.next := nit;
Sale's recommendation that strings be t.rear.ed as sequences of 145 white ¢ © nil do
characters. Pascal are pr d by file routines, thus 146 begin current := c~.next; disposes(c); ¢ := current
these string routines use similar names for similar functions. 147 e_ﬁg
148 end;
* System: 149 current := start; position := 1; chunkno := 0;
IBM 360/370 AAEC Pascal compiler versiom 1.2. 150 status := reading;
151 if current < nil then w := current”.line(1]) else w := ' ';
* References: 152 { reset done on an empty string
J. M, Bishop, 'Isplementing Strings in Pascal', "Software - 153 end -
Practice ard Experience®, 3(9), 779-788 (1979). 154  end T resets };
A. B, J, Sale, 'Strings and the sequence abstraction in Paacal‘’, 155 -
o "Software - Practice and Experience®, 9(8), 671-683 (1979). 156 function length(s: string): naturai;
157
158 begin resets(s); Length := s.length; end;
159
prograa stg(input, output); 160 function eofs(s: string): boolean;
161
const 162 begin
chunksize = 32; 163 with s do eofs := (length + 1) = chunkno * chunksize + position;

alfalen = 10;

University of the 115

164  end { eofs };

165
trpe 166 procedure puts(var s: string);
natural = 0 .. maxint; 167
text= file of char; 168 begin
alfa=x —Tga:ea’arrax {1 .. atfalenl of char; 169 with s do
chunkptr = “chunk; 170 begin
chunk = record 171 1T status = reading then stringerror(1);
- next: chunkptr; 172 37 position = chunksize
Line: packed array (1 .. chunksizel of 173 then
char 174 beg
end; 175 current”_next = nil then
string = record 176 Tbegin
: char; 177 news(current”.next); current”.next’.next := nil;
tength: natural; 178 end;
position: 0 .. chunksize; 179 current := current’.next; chunkno := chunkno + 1;
start, 180 length :* Length + chunksize; position := 1;
current: chunkptr; 181 | end
chunkno: natural; 182 else posttvon := position + 1;
status: (reading, writing, notready) 183 current “.linelposition] := w; w ="' "*;
end; 184
relation = {before, beforeorequalto, equalto, afterorequalto, 185 e_ng_T_Puu 1;
atter, notegualto); 186
187 procedure gets(var s: string);
yar 188
avail: chunkptr; 189 begin
190 with s do
procedure stringinitialize; 191 begin
192 1i7 status = writing then stringerror(2);
begin avail := nil; end; 193 77 eofs(s) then stringerror(3);
194 it position = chunksize
procedure stringerror(n: natural); 195 then
196 begin
begin 197 current := current”.next; chunkno := chunkno ¢+ 1;
writein; writeln(® #w*s execution error in string Library #eax'); 198 position ;= 1
case n of 199 end
T write(' put attempted in read state '); 200 else position := position + 1;
2: write(' get attempted in write state '); 201 7¥ current < nil  then w := current”.linelposition]
3: write(' get attempted beyond end of string '); 202 else w ;= ' *;
4: write(' delete portion bigger than string '); 203 { When the eof coincides with the end of a chunk. }
5: write(' extract portion bigger than string '); 204 end
6: write(' inserting beyond end of string ') 205  end T gets };
end; 206
writein(® swanx’). 207 procedure opens{var s: string);
{} hatt 208 -
end { stringerror }; 209 begin
210 with s do
procedure news(var p: chunkptr); M begin
212 length := 0; chunkno := 0; position := 0; start := nit;
var 213 current := nil;  status := notready; w :='‘;
it 1 .. chunksize; 214 end
215 end T opens };
begwn 216
avail = nil 2117 procedure closes(var s: string);
t en 218
begin 219 begin
new(p); with p” do for i :® 1 to chunksize do Line(i] := ' *; 220 with s do




PASCAL NEWS #17

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
261
242
243
bk

269
270
27
272
273
274

while start <> nil do 275
begin - 276
current := start”.next; disposes{start); 217

start := current 278

end; 279

end { Tloses }; 280
281

rocedure reads(var from: text; var s: string); 282
reads until an end-of-line. T 283
284

begin 285
rewrites(s); if esoln(from) then get(from); 286
while not eoln(from) do - 287
begin s.w := from"; puts(s); get(from); end; 288
end { reads }; 289
- 290
procedure writes(var onto: text; s: string); 291
292

begin 293
resets(s); 294
while not eofs(s) do begin write(onto, s.u); gets(s); end 295
end T writes }; - 296
297

rocedure suppress(var s: string); 298
i Taoves trailing Blanks. } 299
300

const 301
space = ' Y; 302
303

var 304
spaces: boolean; 305

mark, 306

i, 307

L: naturat; 308

309

begin 310
E := length(s); mark := 0; resets(s); spaces := false; 3N
for i := 1 to L do 312
begin 313

1f s.w = space 314

Then 315
begin 316

if not spaces then begin spaces := true; mark := i end 317

ed — =

else begin spaces := false; wmark := 0; end; 319

S om - 320

end; 321

if mark > 0 then s.length := mark - 1; resets(s); 322
end { suppress J;— 323
324

procedure assign(var si: string; s2: string); 325
326

begin 327
revrites{si); resets(s2); 328

MARCH, 1980 PAGE 53

vhile not eofs(s2) do
begin sl.w := s2.w; puts(st); gets(sd); end;
end Tassign };

function compare(si: string; r: relation; 32: string): boolean;

yar
less,

equal: boolean;
Lst,

1s2: natural;

begin
LsT := Length(s1); (s2 :* Length(s2); resets(s1); resets(s2);
equal := Lst = (s2; Lless := false;
while (equal and not less) and not eofs(s1) and not eofs(s2) do
segin
equal := sl.uw = s2.w; less :x st .w < s2.w; gets(sl);
gets(s2)
end;
case r of
before: compare := less;
beforeorequalto: cowpare := less or equal;
equalto: compare := equal;
afterorequalto: compare := not less or equal;
after: compare := not less;
notequalto: compare := not equal
end;
_e_ng—r'c@are 1

procedure alfatostring(a: alfs; var s: string);

const
space = ' °;

var
i natural;
state: (scanning, ended, spacefound);
begin

reurites(s); i := 1; state := scanning;

repeat
1_; 7 > alfalen then state := ended
else
7¥ alil = space then state := spacefound
else begin s.u := al7); puts(s); i := i+ 1 end
until state < scamning;
end { alfatostring };

procedure chartostring(c: char; var s: string);

begin rewrites(s); s.w :=c; puts(s) end;

begin end.

AR AR A AR A A ik i kg

Articles

-




PASCAL NEWS #17 MARCH, 1980

AR AR AR A A A A I A Gl A ¢

by A.H.J.Sale
University of Tasmania
(at the request of Andy Mickel)

1. R

The draft proposal for an ISO Standard for Pascal contains within it a
definition of what I shall call a "conformant array parameter™. The basic
concept is that of a parameter specification which allows a formal-
parameter to assume the values and types of different actual array-
parameters.

How did the draft Standard acquire this feature? And why?

2. PRESSURE GROUPS

During the preparation of the draft Standard, a considerable amount of
public comment was received by the sponsoring body, BSI, and the chairman
of its Pascal Committee, Tony Addyman. (I seem to recall a figure of
10kg.) A significant amount of this was devoted to the problem of writing
general procedures to sort and perform other array operations, inevitably
leading either to suggestions of a full dynamic array facility, or some
sort of conformant array parameter,

Of course, contributors to Pascal News have not been idle in this regard
either. Many suggestions for conformant array parameters have been
received; some good, some not. It is clear that this is perceived by many
to be a deficiency in the language, though there are quite good arguments
to support the view that it is only a deficiency viewed in a particular
way. Correct or not, the perception has led to pressure being applied to
the Pascal Committee to put a feature of this sort in the draft, the
Numerical Algorithms Group (NAG) at Oxford being an important example.

However, this pressure had not had an effect by the time of the publication
of the third Working Draft (N462) widely published last year. Then, two
critical pressures were applied to the Committee by N. Wirth and
C.A.R.Hoare (independently) supporting the view that now was the time to
add a conformant array feature to Pascal. It seems safe to assume that in
the absence of pressure from such quarters the urge to add to Pascal would
have been successfully resisted by BSI.

3. PROPOSALS

The proposals put forward by way of defining a conformant array feature
have been many and varied. Some have been strange in their exploitation of
minor aspects of Pascal, and many others have been obsessed by syntax to
the exclusion of what the construct should mean. It is quite clear, even

before you look seriously, that the addition of conformant arrays to Paseal
is not a trivial task.

The BSI Pascal Committee accordingly had to choose something to satisfy the
pressures from the joint designers of the language. They rejected the
silly suggestions of course, and chose to put in the document which went to

PAGE 54

|

—

- o W A s g oS marenl

.

N



Turin (N510) a considerably modified version of s scheme which scemed to
originate with Jacobl, Subsequently, it became clear that there were
better possibilitles, and BSI withdrew support for its own draft, in favour
of an improved one, now inoorporated in the Draft Proposal. This scheme,
which seems to have originated with N.Wirth, has been examined by both
opponents and proponents of the addition in order to ensure that at least
if there is to be an addition, it should be the best one possible. That is
my own position.

The Key 1dea behind the ocurrent proposal 1s that it preserves the
abatraction of an array as a complete mapping, and incorporates a number of
"compile-time® checks on the validity of actual calls. The cost is that of
introducing what the draft proposal calls a "schema®; or in other words a
specification which is not a fypys but a rule for {identifying and
constraining a set of types, Thus the type of a formal conformant-array-
parameter is not known from its declaration, but is supplied by each call.
The oonsequences are very simple outside this one point, especially in
def'ining paramstur-list congruity which many other proposals wmake very
heavy weather of indeed.

4. TURIN

At Turin, the site of the very first computer conference ever, there was ‘a
considerable amount of discussion of the oonformant array proposal.
Opposition to the proposal was stated by the US, and one or two other
peocple, but there was clearly a substantial majority which would accept the
inclusion of such a feature, and many indeed welcomed 1it. Consequently,
the feeling of the experts group was recorded as buing in favour of aome
fore of conformant array parameter being in the first Standard,

Disoussion then turned on the form of the parameter mechanism, with the
possibilities being the BSI original, the redraft now incorporated, and an
improved Jacobi-like proposal, Conformant array parameters took over two
hours of technical discussion (about 12% of the total), and also ran into
dinner, breakfast and a coffee-break. However, it 1is useful to realize
that the Turin meeting perceived this as an important issue, but not of
over-riding importance.

5. TIMELINESS

Part of the pressure to make this feature appear in the Draft Standard
arises from a desire t0 have important numerical algorithms translated into
Pascal, and the language used in this area now dominated by Fortran. But
simply because this pressure 1s present, many implementors have already
inserted a feature of this general type into their Ilmplementatlons, and
they differ very widely. Not surprizingly, not many implementors think
much about the abstractions behind their extensions, or perhaps they borrow
extensions. The signs are there that if conformant array parameters are
not standardized now, they may as well never be for all the good 1t will
do,

Speaking personally, I had had six new implementors call me in the last
month, and all of them have asked for guidance on how they should implement
conformant array parameters. Such interest by new commercial
implementations 1s significant; however the existing implementations are
likely to be harder to bring into any sort of conformance.

Reluctantly, because I was not an original supporter of conformant arrays,
I have been convinced that both timelivness and utility require the action
that was taken at Turin., I think the inclusion is warranted.

§. CURRENT STATUS

To keep readers of Pascal Newg informed, I reproduce some pleces of the
draft proposal as they relate to conformant array parameters. It can be
sven that the addition is entirely localized within the parameter 1ist,
except for the addition of one item to 'factor' (and no need even to write
anything about 1t in the accompanying text). The conformant array
parameter schema is well-crafted so that it hangs together as an integrated
whole, and the reasons for most of the statements will be clear after some
thought .,

The exact syntax may be changed without damage to the proposal. The use of
", "im . and ";™ 1s based on analogles with subranges, variable-
declarations, and formal parameter lists respectively. Other people may
prefer to use commas or whatsver, It doesn't really matter as long as the
abstraction is right, except for astudents.

1. IMRLEMENTATION

I have noticed some people saying that the implementation of conformant
arrays is unproven, and I should like to sharply disagree, There is no
problem whatsoever about the implementation of any of these schemes, and
they have been well-known for a very long time. The whole argument has
been around fitting the idea into Pascal with the minimum of change to 1its
fabric. Any competent implementor will be able to implement this feature
on any machine I know, and existing implementations which differ can be
altered yuary sasily.

There 1s one exception. Not that it is unknown, but that wg know very well
that 1if we are going to allow packed arrays to be actual paramsters to a
conformant array paraseter, then we will be forced into elther glving wup
packing completely on some machines, or imposing some ugly restrictions on
conformant array parasBeters, or passing esome bit-size argument and
requiring the called procedure to reproduce the vagaries of the packing
algorithm, The problem is essentially that the piza (in bits, say) of the
component-type may not be known until execution, For this reason, the use
of packed in a conformant array parameter was not allowed.

It should be realized that the inclusion of packed in the Standard means
that all 4implementors pust provide it (do not fall into the trap of
thinking of the Standard as a permissive one or a layered one such as
COBOL), and the likely effects are simply to cause it to be ignored and the
offectiveness of the Standard nullified, or to cause no packing to take
place when the 'Standard' compiler option is set. This would be singularly
unfortunate for a feature whose maln use seems to be to simulate something
else (atrings). It should bDe pointed out that its exclusion means that
sowe implementors may choose to provide it as an extension. The abstract
meaning is olear; the syntax 1s clear; only the implementation is

difficult. : s a

LT# SMIN TVISYd

086T “HIY¥VW

Sq  I9vd




EXTRACTS FROM WORKING DRAFT 5 (Shortly to be Draft Proposal to IS0)

I Tt is an array-type, and T2 is the type the

Sm 663 ordinal-type-identifier of a conforeant-array-schema, then TV {s
————'-f'f———" conformable with T2 if all the following four statements are true.
varxabl:;:::atg:::;:fzsl{:::&:o: ] (a) The index-type of TV is compatible with T2.
ler- : (b) The smalleat and largest value of the index~-type of T1 lie
r (tyve-identl:xer { conformant-array-schema) . within the closed interval defined by values of T2.
con ornfnt-ar:dzfzcie:a s . (c) The component-type of T1 1s the same as a component-type of the
array ndex-type-specification conformant-array-achema, or 1is oonformable to & componsnt
{ *;" index-type-specification } *]* »of" conformant-array-schesa
( type-identifier | conformant-array-scheaa ) . (d) T1 is not designated pu;ked

index-type-specification =

bound-identifier ".." bound-identifier It shall be an error 1if the osmallest or l;rxout value of the

*:" ordinal-type-identifier , index-t
tound-identifier s identifier . VﬂJ?; :F!rz?r T1 lies outside the closed interval defined by the

During the entire activation of the block, the first
bound-identifier shall denote the amallest value of the index-type
of the actual-parameters, and the second bound-identifier shall
denote the largast value of the index-type of the

The occurrence of an identifier within an identifier-list of a
valuc-parameter-specification or a variable-parameter-specification
shall be its defining-point as a paraseter-identifier for the region
that is the formaleparameter-list in which it occurs und {ts

defining-point as a variadble-identifier for the region that is the actual-parameters. .
procedure-block or function-block, if any, whose formal parameters
are defined by that formal-parameter-liat,
The occurrence of an identifier as a bound-tdentifier within an
6.6.3.6 Parameter list congruity. Two formal-parameter-lists shall

index-type-specification shall -~ be its defining-point as & be cgngruous if they contain the same number of parameters and {f
bound-identifier for the region that is the formal-parameter-list in the parameters in corresponding positions match. Two parameters
which it occurs and for the region that is the procedure-block or shall match if any of the four statements that follow is true.
funztion-block, 1f any, whoase foramal parameters are defined by that (a) They are both valus parameters of the same type.
foraal-parameter-list. (b) They are both variable parameters of the same type, or have

' equivalent conformsant-array-schemas. Two
If the component of a conformant-array-schema is fitself conformant-array-schemas are equivalent if they have the same
conforsant-array-schema, then an abbreviated form of defintiion may ordinal-type specified in their index-type-specifications and
be used. In the abbreviated form, all the index-type-specificationa . their coamponents are either of the same type or are equivalent
shall be contained within the same enclosing square brackets, a conformant -array-schemas.
single semi-colon replacing each sequence of right-square-dracket (c) They are both procedural parameters with ocongruous paraseter
Rof* ™array" left.square-bracket that occurred in the full form. The liats, f any.
abbreviated form shall de equivalent to the full fora. (d) They are both functional parameters with oongrucus paraseter

lists, if any, and the same result-type.
Examples:
array{u..v: T1) of array(3..k: T2) of T4
acray{u..v: T1; J..k: T2) of T3

————— Section. 671

6.6.3.3 Yarsiable parametera. The actual-parameter (see 6.7.3 and r———————

6.8.2.3) corresponiing to formal parameters that occur in the same factor s variable | unsigned-constant | bound-identifier 1}
identifier-list i{n the formal-parameter-list shall ali be of the function-designator | set-constructor !

same type. This type shall be the same as the type of the w(® expression ")* | "not" fastor .

LT# SMIN TYISVd

0867 “HIYYW

typs-identifier {in the variable-paramcter-specification if the
formal parameter is 80 specified, otherwise it shall be conformable
to the conformant-array-scheasa in the

variable-parameter-specification. 2ach formal parameter shall denote

the oorresponding actual-parameter during the entire activation of

the block. Any operation involving the formal parameter shall be

performed immediately on the sotual-parameter.

If access to the actual-parameter invoives the indexing of an array
and/or the selection of a fleld within a variant of a record and/or
the de-referencing of a pointer and/or a reference to a
buffer-variadble, these actions shall be executed before the
activation of the bdlock.

Components of variables of any type designated packed shall not be
used as actual variadle parametera.

95 39vd



Mr. Andy Mickel

Pascal User's Group
University Computer Center:
208 SE Union Street
University of Minnesota
Minneapolis, MN 55455

Dear Andy:

DEPARTMENT OF THE ARMY
USA DARCOM AUTOMATED LOGISTICS MANAGEMENT SYSTEMS ACTIVITY
PO BOX 1578, ST LOUIS, MISSOURI 63188

18 January 1979

227 EX

Our agency sent questionnaires to about 950 members of the Pascal
User's Group in the United States in order to gather information
on their experience with the language and available software. Thank
you for providing us with a copy of the User's Group mailing list

for this endeavor.

We are submitting the attached copy of the results of our survey to
you for publication in the Pascal News. Also, enclosed is a copy

of the questionnaire for your information. If you have any questions,
please contact John McCandliss, 314-268-2786, or Sue Burklund, 314=-

268-5151.

1 Incl
As stated

™ .

e ol oA [, PR N
ROBERT R. RANSOM
Director for ADP Technology

PASCAL SURVEY

Pascal is a computer language developed by Niklaus Wirth at ETH in
Zurich, Switzerland. It is derived from Algol 60, but is more powerful
and incorporates structured programming principles. Pascal has been
implemented on a variety of computers throughout the world with the most
common being Control Data Corporation and Digital Equipment Corporation
computers, Its widest use to date has been as an instructional tool to
teach studenta the principles of programming in a structured manner, but
some computer companies, notably CDC and Texas Instruments are using it
as a systems programning language.

ALMSA developed a questionnaire which was sent to approximately 950
membera of the Pascal User's Group in the United States. We received
about 120 usable responses, which were analyzed to provide the statistics
for this report. The reaponses, especially in the area of relative speed
and size of Pascal generated code compared to other languages, were often
incomplete, so each area of the report indicates the number of presponses
on which it is based.

The questionnaire brought some interesting facts about Pascal usage to
light. The first interesting statistic is that almost } of the responses
were from educational institutions, and another } were from computer
companies, Most of the government organizations responding were research
oriented, It is safe to say that as yet, Pascal has not moved into the
mainstream of computer programming, although judging by the fact that
over 4/5 of the respondenta said that Pascal usage at their installation
was increasing this development might be forthcoming in the future,

Another interesting fact is that 3/5 of the respondents were using Standard
Pascal, Pascal was highly rated as an educational tool, but got its
lowest ratings as a language for writing operating systems and business
applications. Extensions of Pascal, such as Brinch Hansen's Concurrent
Pascal, will be necessary before Pascal will be acceptable for writing
operating systems., Other extensions, such as better I/0 capabilities

will be necessary to make Pascal an acceptable business programming
language.

It is hard to make any judgment as to the efficiency of Pascal generated
code, because of the small number of responses, and the large variety of
compilers cited,. In most cases, the Pascal generated code was both
slower and larger compared to modules in assembly language and other high
level languages. However, a couple of compilers, including the widely
used University of Colorado veraion, were producing code that was compared
favorably with that produced by FORTRAN compilers.

LT# SMIN YISV

086T “HIUYK

{5 39




June-October 1978

PASCAL QUESTIONNAIRE STATISTICS

General Statistics: Number Percent

Number of questionnaires mailed 950 100%

Number of replies received 155 16%

Replies from organizations which didn't have working 33 3%
compilers or said they couldn't answer our survey

Usable replies 122 13%

Iypes of Respondents:

a. Governmental organizations 10 8.2%
b. Educational organizations 60 49.2%
¢. Business organizations 23 ;g.%
d. Computer organizations .
Total 'ﬂ% Tw%

Type of Pascal Used:

a. Standard 78 65.0%
b. Subset of standard 12 10.0%
c. Sequential Pascal 1 9.2%
d. Concurrent Pascal 5 4.2%

e, Other 14 11.
Total T2 '13'6'%

Note: These numbers are not exact since some organizations had more than
one Pascal compiler.

How many of these organizations use Pascal compilers
as opposed to interpreters?

a., Pascal compilers 87 76%
b. Pascal interpreters :g ﬁ'/.
c. Both

Total T TM}

Percentage of coding being done at each installation in Pascal:

a. Number of replies 94
b. Aversge % of coding 14.5%

Trend of” Pascal usage at each installation:

a. Replies 116
b, Increasing 84%
c¢. Decreasing or stable 16%

R S
A
1
-
=
17
(wd
k-3
June-October 1978 -
m
Note: The following three areas were rated on a 0 to 3 scale where: (’f,
0 = Poor
1 = Adequate o
2 = Good ~
3 = Excellent
Average
Number of replies Rating
Reliability of Pascal compilers: 16 2.2
Suitability for the following applications:
a. FORTRAN replacement 110 2.1
b. ALGOL replacement 95 2.4
c. Educational use - 104 2.6
d, Operating systems 88 1.4
6. Systems programming 101 2.0
f. Buainess applications 87 1.4
&. Scilentific applications 99 2.1
Pascal's capabilities in various programming areas:
a, I/0 operations 114 1.4
b. Numeric computations 122 1.8 ;
c. Integer arithmetic 111 2.4 =
d. Character handling 114 1.9 e
e, String handling 112 1 .
—
=
Speed/size of Pascal generated code compared to a similar module on the o
same system in another language:
Speed ) Size
a. ber of replies 20 a. Number of replies 13
b. Faster 3 b. Smaller 1
c. Slower 17 c. Larger 12
Comments that many respondents made about the limitations of Pascal and
what they thought would be the most useful extenaions to Pascal:
a. Formatted 1/0
. Random access capabllities
¢. Better interfaces with other programs
d, Ability to initialize variables
e, Bit strings
f. Make it easier to. compile procedures separately
&. More interactive functions
h. Dynamlic arrays
o
»
o
m
v
oo



CONVERTING AN APPLICATION EROGRAM FROM
QMSI PASCAL 1. 1F TO AAEC PAGCAL G000/1.2

Groffrey R Crinton
State Electricity Commission of Victoria
Richmond, Victoria 3121, Australia

1 recently had occasion to transfer an application program originally
written on & PDP 11/34 system using RT-11 and OMSI Pascal 1.1F to an
installation running AAEC Pascal 8000/1.2 under MVS on a dual IBM 370

Although the program had originally been written with this transfer in
mind, and hence with a minimum of system dependent features, there were
several arsas in which unexpected changes had to be made. Some of the
changes are of a trivial nature, and were expected. Others, however,
were less obvious., and posed some problems

This note describes the differences encountered, and is intended to show
others the sorts of problems likely to be encountered in such an
exercise.

1. The original version was written using a mixture of upper and lower
case characters. When this was fed into the AAEC compiler the compiler
crashed; no indication of the likely cause of the problem was given, so
a bit of inspired guess~work wes required. The solution used was to
change the whole program to upper case

2. It was necessary to convert occurences of the characters [, 1 and ~
to the AAEC equivalents., namely (., .) and & 1 have since found that
the AAEC compiler accepts [ and 1, but this is not documented

3. There were several occurences of VALUE as & varisble name. Since
the AAEC compiler allows & VALUE segment, which follouws immediately
after the VAR segment, this caused it some confusion

4. I had omitted to include names of external +files, including INPUT
and OUTPUT. in the program hesader (which is optional in the OMS1
compiler), so these had to be inserted

S. 1t was necessary to reduce the nesting level of procedures, since
AAEC allow only six levels. The OMSI compiler allows up to ten levels
Such & restriction would appear to me to be contrary to the philosophy
of structured programming, as it requires the programmer to either use
larger (and hence less comprehensible) blocks, or to place procedures
which should logically be contained in another block at a higher level.

& The OMSI system had failed to detect an invalid assignment ¢to &
subrange wvariable. This was correctly diagnosed by the AAEC tun—time

system. The particular example was & subtle form of
yar index : 1.. tops

ina;; im0y

7. The AAEC system, when running under the Time Sharing Option (180) of

HYS dn,: not actually write to a terminal until & line is completed,
wx?h writeln. Hence all prompting messages had to be changed to “Use
writeln instead of write

8. It was necessary to change all output formats to allow for a
carriage control character. This was not strictly necessary, but it was
required if the system default DCB information was to be used (ie
RECFM=FA).

Q. S8ince the AAEC version does not specifically allow for interactive
vse, all input had to be changed so that the File pointer was always
defined. This was done primarily by changing all occurences of
readln(..) to readln; read(..), although several other minor pragramming
changes were also necessary

10. The OMSI compiler does not pre-declare files INPUT and OUTPUT, and
consequently does not allow references to input™ to look—ahead on the
input file. With the changes described in point 9, it was useful to be
able to do ¢this in the AAEC verion of the program. Further changes
became necessary, however, when I realised that the system was adding
extra blanks to tha ends of my input lines, to fill them out to 60
characters. (I can’t say that I wasn’t warned by Jensen and Wirth, bout
that one took a lot of finding!)

11. (OMS] Pascal uses modified forms of reset and reurite to attach
actual RT-11 files to internal file variables. The AAEC system requires
this connection to be made externally, and hence the appropriate
initialisation routine had to be changaed

12. As OMSI Pascal ignores the ‘packed’ attribute, and automatically
packs all character arrays and strings, I had not specified arrays of
type char as packed. This was necessary on the AAEC system for proper
operation of my program

The conversion process was., despite the differences outlined above,
probably simpler than I had expectad. Apart from the [/0 related
difficulties, there were few incompatibilities between the systems. and
conversion of the whole program of 1200 lines was completed within a
couple of days

15th May, 1979

AR Agh A A A RN

LT# SMIN YIS

0867 “HIYVW

6s  39Vd



DOES SCOPE = BLOCK IN PASCAL?

T. P. Baker"
Department of Computer Science
The University of Iowa
Towa City, Iowa 522h2

and
A. C. Fleck
Department of Computer Science
and

Weeg Computing Center
The University of Iowa
lowa City, Iowa 522k2

INTRODUCTION

There seems to have developed some controversy over whether the scopes of identi-
fiers are (or should be) synonymous with blocks in PASCAL. In this note we call
attention to the formal statement of the "rules" dealing with this situation, point
out several other items in the literature that address the question of the title, and
present our own personal conclusions. We relate our comments first with respect to
"Standard" PASCAL and then to the new BSI/IS0 Working Draft Standard PASCAL.

WIRTH'S STANDARD PASCAL

There are several levels of documentation to consider in this cese, in decreasing
order of abstraction: the Report [2], the User Manual [2], and the several E.T.H.
compilers., Arthur Sale in [3] argues strongly the position that scope = block. But
we would like to suggest that there are loopholes. The Report is unfortunately vague.
In section 10, we are told that scope = procedure (or function) declaration and that
identifiers are not known outside their scope. But it gives no details of how they
are known imside their scope. The crucial issue is nested scopes which are mentioned
in Section 2 but for which no rules are given. Section 4 of the Report tells us that
the association of an identifier must be unique within its scope. This 1s essentially
the extent of the specifications in the Report. In this light, consider the following
example:

1 PROGRAM P1(OUTPUT);

2 PROCEDURE Q; BEGIN WRITELN(1) END;

3 PROCEDURE R;

N PROCEDURE S; BEGIN Q END;

5 PROCEDURE Q; BEGIN WRITELN(2) END;
6 BEGIN S END;

7 BEGIN R END.

Now there are two definitions provided for identifier 'Q' within nested scopes.
The one within R must not be known outside R. There is only one invoking instance
of the identifier 'Q' (hence its association must be unique) and its occurrence is
validly within both scopes and the Report's rules give us no reason for preference.

*present address: Mathematics Department, Florida State Univ., Tallahassee, FL 32306

Next we consider the User Masnual. Here in Chapter 1 (pp. 6-7) we find it again
stated that scope = procedure declaration. Also it is stated "the scope or range of
validity of an identifier x is the entire block in which x is defined, including
those blocks defined in the same block as x." Applied to program Pl above, this
would seem to imply that the correct output of P1 is 1. However the above quote has a
parenthetical comment that all identifiers must be distinct for this to apply and
refers to Section 3.E for the case where identifiers are not necessarily distinct
(this is the case with P1). Reading Section 3.E, wé find that the definition of a
variable definition in an inner block is valid throughout that block. This might sug-
gest the correct output of Pl is 2, Actually this rule has nothing to do with program
Pl as it deals exclusively with variable identifiers, the topic of Section 3.E.
Unfortunately the other sections on type identifiers, procedure identifiers and con-
stant identifiers give no rules at all.

The last, most specific and least satisfactory source for a resolution of scope
rules (other than for variable identifiers) is the E.T.K. compilers. Because of
Wirth's close association here, their performance must be considered significant. The
output of both the Version 2 and Version 3 compiler for P1 is 1. This performance is
supported by the rule in Chapter 1 (p. 8, item 16) of the User Manual that "All ob-
Jects must be declared before they are referenced” (two exceptions noted are pointer
types and forward proceduress. In the absence of other rules about scope it is not
unnatural to apply this one, hence accepting the outer definition throughout its scope
until another occurs (the Version 2 and 3 compilers do violate the unique association
rule which does not come¢ up in P1). This is presumably the reason for Watt's [U]
assumption that Sale [3] criticizes.

THE BSI/ISO STANDARD

We now turn our attention to the new Draft Standard [1]. While there are prob-
lems with the existing language specification, it 1s this new definition which causes
us the most serious concern. The Draft Standard eliminates the previously existing
omissions on the specification of scope rules. There is an explicit enumeration of
the nested scope rules for all varieties of identifiers {(see Section 6.2.1). Unfor-
tunately, as we shall see, these rules imply that scope #.block for all cases except
variable and type identifiers.

Each identifier has a defining occurrence and each defining occurrence has a
scope which encloses all "corresponding occurrences" (a term not defined). Here the
Draft Standard leaves some ambigulty as it does not state precisely where such scope
begins and ends. Since the scope must enclose all "corresponding occurrences" we
shall simply essume that the scope ends with the end of the block in whose heading the
defining occurrence appears. The choice for the beginning of the scope is another
question. Since each defining occurrence is prescribed as having a scope associated
with i1t {i.e., scopes are assoclated with defining occurrences not blocks), one seems
naturally forced to assume that such a scope begins with the defining occurrence.
This assumption seems reinforced by the rule (in Section 6.4) that the scope of the
defining occurrence of a type identifier does not include its own definition, except
for pointer types. There 18 one exception to this assumption explicitly stated in
rule (5) of Section 6.2.1. This rule states that the defining occurrence of any
identifier or label must precede all its "corresponding occurrences" except for a
pointer-type identifier which may have its defining occurrence anywhere in the type-
definition part. Hence we assume that the scope of a pointer-type identifier begins
with the beginning of the type-definition part rather than with its defining occur-
rence.

LT# SMIN TYISVd

086T "HOYVM

09 39




Now consider the previously given program example Pl. There ie no longer any
doubt over what its correct output must be. This program has two defining occurrences
of the identifier 'Q' (the specification of a defining occurrence for & procedure
identifier is given in Section 6.6.1), in lines 2 and 5. The scope of the first
extends to the end of P1 (i.e., lines 2-7) and the nested scope of the second extends
to the end of procedure R (i.e., lines 5-6). Clearly then the call in line 4 is a
"corresponding occurrence" for the definition in line 2, an association clearly vio-
lating ALGOL60-style scope rules.

The same situation prevails for constant identifiers. As an example consider

1 PROGRAM P2(OUTPUT);
2 CONST TWO = 2;

3 PROCEDURE Q;

i CONST ONE = TWO;

5 TWO = 1;

6 BEGIN WRITELN(ONE) END;

7 BEGIN Q END.

We do not include the scope analysis for this program as it is similar to that
for program Pl. The upshot is the same as for procedure identifiers, namely scope #
block for constant identifiers.

On the other hand since type-identifiers cannot occur in a heading prior to the
type-definition part, rule (5) of Section 6.2.1 implies that scope = block for type
identifiers. For instance, in contrast to the previous examples, the program )

1 PROGRAM P3(OUTPUT);
2 TYPE A = RECORD L : tA; C : REAL END;

3 PROCEDURE Q;

N TYPE B = 14,

5 A = RECORD L : B; C : INTEGER END;
[3 VAR X : B;

7 BEGIN NEW(X); Xt.C :=0.5 END;

8 BEGIN Q END.

is illegal because of the type conflict in the assignment in line 7 (however the Ver-
sion 3 E.T.H. compiler finds it legal).

Also since variable identifiere cannot be used in the heading at all, these rules
imply that scope = block for varisble identifiers as vell. Hence for the Draft Sten-
dard we get two answers to the guestion of the title; 'yes' for variable and type
identifiers and 'no' for constant, procedure and enumeration-type identifiers.

CONCLUSIONS

The lack of specification of rules for nested scopes in the original PASCAL defi-
nition has resulted in different interpretations being taken by different implementa-
tiong. This point has already been made in [5]. The fact that so basic an issue must
be settled has been recognized in the development of a draft standard.

We feel that while the Draft Standard does resolve the ambiguities of scopes, the
solution that is proposed is very poorly conceived. The answer to the question "does
scope = block?" should be uniform for all varieties of identifiers and furthermore we
agree with Sale [3], that uniform answer should be yes.

Programs P1 and P2 show how present scope rules provide for the binding of cor-
responding occurrences of identifiers to defining occurrences outside the block of the
corresponding occurrence even though this block itself conteins & defining occurrence.
A convention which provides for the binding of one identifier to two definitions with-
in the same block seems entirely contrary to the evolution of PASCAL.

The scope rules should state that the scope of a defining occurrence extends from
the beginning of the block in whose heading it occurs to the end of this block. This
would replace rules {1) and (2) of Section 6.2.1 of {1]. The other rules would be
retained as stated; however we would rephrase rule (5) slightly to say that the com-
pletion of the definition for a defining occurrence must precede all corresponding
occurrences—then the scope rule in Section 6.4 is dropped. This would make programs
P1 and P2 1llegal as they then violate rule (5)—the defining occurrence in the nested
block does not precede first use. It has already been suggested [5] how this inter-
pretation can be handled in a one-pass compiler. The only complication to this comes
in the exception to rule {5) for pointer-types which must force the binding of all
such identifiers {even those with definitions in enclosing scopes) to be deferred
until the end of the type-definition part.

We feel the approach we suggest provides a conceptually cleaner solution to the
scoping questions. The treatment of all varieties of identifiers is internally con~
sistent and consistent with the conventions of other block structure languages as
well. Moreover it conforms with the principle of locality. With the rules given in
the present Draft Standard, a block can contain identifiers with both a local and &
nonlocal binding—a very confusing situation.

REFERENCES

1. A.M. Addyman et al., "A draft description of PASCAL," Software-Pract. & Exper.
9,5(1979), 381-42L; also PASCAL News 14{1979), 7-5h.

2. K. Jensen & N. Wirth, PASCAL User Manual and Report, Springer-Verlag, Second Edi-
tion, 1975.

3. A. Sale, "Scope and PASCAL," SIGPLAN Notices 1h,9(Sept. 1979), 61-63.

D.A. Watt, "An extended attribute grammar for PASCAL," SIGPLAN Notices 1k,2(Feb.
1979), 60-Tk. -

5. J. Welch, W.J. Sneeringer & C.A.R. Hoare, "Ambiguities and insecurities in PASCAL,"
Softvare-Pract. & Exper. T(1977), 685-696.

LT# SM3N YISV

086T “HIYVW

19 39vd



A NOTE ON PASCAL BCOPES

T. P. Baker and A. C. Fleck

Department of Computer Sclence
The University of Iowa
Iowa City, Iowa 52242

In response to the recent efforts toward development of a PASCAL standard [1], we
would like to point out a peculierity we have observed in the PASCAL notion of scopes,
as exemplified in the E.T.H. compilers, and to suggest how a "cleaner" alternative
notion might be implemented.

Beginning with ALGOL60, "block structured” languages have followed the convention
that scopes of local declarations correspond to the boundaries of the blocks in which
they occur. Since PASCAL superficially appears to follow this convention, a progremmer
is likely to go along for some time before he stumbles upon a case where PASCAL scopes
do not correspond to block boundaries. When he does, it is likely to be a source of
confusion. For example, consider the programs and output below (from Version 3 of the
PASCAL 6000 compiler):

1 PROGRAM P1(OUTPUT);

2 PROCEDURE Q; BEGIN WRITELN(1) END;

3 PROCEDURE R;

4 PROCEDURE S; BEGIN Q END;

5 PROCEDURE Q; BEGIN WRITELN(2) END;
[ BEGIN 8; Q END;

7 BEGIN R END,

LV g

PROGRAM P2(OUTPUT) ;
TYPE A = CHAR;

PROCEDURE Q;

TYPE B = "A;

A = RECORD L,R: B END;

VAR X: B;

BEGIN NEW(X); X~ := 'A' END;
BEGIN Q END.

=1 O\ W N

PROGRAM P3(OUTPUT) ;
VAR F: INTEGER;
PROCEDURE Q;
PROCEDURE R; BEGIN WRITELN(F) END;
FUNCTION F: INTEOER; BEGIN F :« 2 END;
BEGIN R; WRITELN(F) END;
BEGIN F := 1; Q END.

~1 AW B D

n =

Note that according to current and proposed scope rules [1], this is the "correct™
program behavior in each case.

Ve propose that PASCAL can be standardized to follow the ALGOL60 scope conventions,
with the added restriction that (except in recursive pointer type declarations) no use
of an identifier may precede its declaration {this sppears to be the approach taken in
ADA [2]). Thus, program Pl above would be considuied incorrect, since the use of Q in
procedure S precedes a local definition of Q. P3 would be incorrect for a similar rea-
son, because the use of F in procedure R precedes a local declaration of F. Program P2
would be considered incorrect, but for a different reason. The variable X would be in-
terpreted as a pointer to a record, so that the assignment "X* := 'A'" would be a type
conflict. This is exsctly what would have happened if the outer declaration "A=CHAR"
had not been present. In this case, the convention followed by the compiler not only
makes the interpretation of the procedure Q dependent in an unobvious way on its glcbal
environment, but also effectively blocks the possibility of defining & pointer type for
the local record type A.

A single pass compiler can enforce these conventions. On first encountering a use
of an identifier X that is not yet declared in the local block, the compller attempts
to resolve the reference to a previously processed nonlocal declaration, say D, in one
of the surrounding blocks. If this search is successful, the processor creates new
"dummy" entries for X in the symbol table for the local block and all surrounding blocks,
out to the block where D appeared. These dummy entries will include a pointer to the
entry corresponding to D and will serve the purpose of insuring that any subsequent dec-
laration of X locally will be deleted and treated as an error.

PASCAL already provides means for handling the few cases where forward references
are unavoidable. For procedures, functions, and labels, there are forvard declarations.
For recursively defined pointer types, processing can be deferred until it can be
determined whether a type identifier should be resclved as a local or nonlocal refer-
ence. For example, processing of "B="A" in P2 would be deferred until the local dec-
laration of A was encountered (or until the end of the TYPE section).

We believe that the proposed conventions are an ilmprovement in the direction of
simplicity and conformity to established practice. Furthermore, as exemplified best in
program P2, they improve program modularity, by permitting reliable local resolution of
references, which under present rules is impossible.

[1] A.M. Addyman et &l. "A draft description of PASCAL," Software Pract. & Exper.
9, 5(1979), 381-42h; also PASCAL News 1L(19,9), T7-5k.

[2} Preliminary ADA Reference Manual, SIGPLAN Notices 1k, 6(1979).

LT# SH3N TYISVd

0867 "HIYVW

79 39vd



AN ALTERNATE APPROACH TO TYPE EQUIVALENCE

William I. MacGregor

Bolt, Beranek, and Newman
So Moulton St.
Cambridge, MA 02138

One of the strongest features of Pascal ia the ability to define new data
types. Because this ability is central to the language it 1s unfortunate that the
original documents defining Pascal (f.e., the Jensen and Wirth "User Manual and
Report” and the axiomatic definition) did not precisely state when two variables or
values are of the same type, or precisely what constitutes "type checking" in an
sesignment statement or procedure call. Language designers have exercised their
skill and imagination in attempting to resolve the ambigufties without unduly
disturbing the "spirit of Pascal”; this note 1s one such attempt.

Recently, the BSI/ISO Working Draft of Standard Pascal was published in Pascal
News #14, and this standard exhibits a particular {and carefully considered) solution
to the type equivalence problem. The technique 18 a hybrid of name and structural
aquivalence; for strings and sets, the standard specifies a structural definition of
type equivalence (for a discussion of name versus structural equivalence, see Welsh,
Sneeringer and Hoare, "Ambiguities and insecurities in Pascal”, Software Practice and
Experience, N 7, 1977). While the solution is relatively direct it leaves a great
deal to be desired, for instance, under the proposed interpretation all variables
which are structurally integer or subrange of integer are of compatible types. Since
the criterion for type equivalence is a function of the underlying structure,
seemingly inconsistent cases arise. After the program fragment

VAR
X ;PACKED ARRAY [1..10} OF integer;
y sPACKED ARRAY {1..10) OF integer;
u  :PACKED ARRAY [1..10] OF char;
v :PACKED ARRAY (1..10] OF char;

the assignment "us=v" 1is legal whereas 'x:=y" 18 not. (The first must be permitted
to intlude statements like “u:=’abcdefghij’", and the second is presumably denied to
limit the complexity of the equivalence definition and forthcoming Standard Pascal
compilers.)

The rest of this note describes a different role for types and type equivalence
in a Pascal-like language. The scope of the solution is strictly limited because
significant extensions to the syntax of Pascal were not coneidered (thie eliminated
interesting but grandiose schemes involving a new unit of program modularity, as well
as the possibility of explicit type transfer operators). The details are developed
from a series of principles embodying my understanding of what strong typing means in
the context of Pascal.

Pl. Every variable has a unique type and a unique symbolic type
name.

Since both the type and type name are unique, the type of a variable can be referred
to by ite symbolic name without ambiguity. 1In the interests of simplicity it seems

wise to prohibit multiple names for the same type. Types are assigned to variables
rather than values, because I wish to allow distinct types to exist with the same
value set.

P2. All types are elther predefined or created in a TYPE definition
part.

The only function of the TYPE part is to define new types; the only function of the
VAR part is to define new variables. As obvious as this may appear at first glance
it is a very strong restriction--it fmplies that all types must be explicitly named
in a TYPE part. For example, the Standard Pascal fragment

VAR
v :ARRAY [1..100) OF REAL;
e :(red,blue,green);

would have to be rewritten in order to conform to principle P2

TYPE
vector = ARRAY {i..100) OF REAL;
color = (red,blue,green);
VAR
v ivector;
e tcolor;

This principle will force the creation of many new names in a typical program, one
for each type, but at the same time it provides the basis for a simple and explicit
test for type equivalence. In fact, the spread of names can be controlled in a
manner described below.

P3. Every clause in a TYPE definition part (i.e., every use of the
operator "=") creates a unique type.

This principle, too, seems like good common sense: the TYPE part exists to define
new types. (It is interesting to note that the proposed Standard Pascal allows new
types to be created in a VAR part, and doesn’t require types to be created by a TYPE
part!) -

P4. Two variables have the same type 1f and only if they are
declared with the same type name.

In other words we adhere to a very strict form of name equivalence. After the TYPE
and VAR parts

TYPE
' speed = -real;
weight = real;

VAR
a,b :apeed;
x sweight;
y iweight;
z ireal;

the variables a and b have the same type (namely speed); x and y have the same type
(weight) and no other type equivalences exist.

LT# SM3IN TVISYd

0361 "HIYVW

€9 39vd




P5. 1In every assignment, the type of the variable on the left must
be the same as the type of the expression on the right (exception:
integers may be assigned to real variables).

1 believe this 18 the simplest definition of "strong typing”. To continue the
previous example "a:=b" 1s a legal assigument but "a:=x" is not, even though the
values of both a and x are real numbers. Since parameter transmission can be
described in terms of assignment this principle applies to parameters in function and
procedure calls; it forces an exact match between the types of formal and actual
parameters, and it implies a careful interpretation of operator overloading in
expressions (discussed after P7 below).

The exception is galling but historically founded. It is pervasive, as will be
seen, because it ifmplies that any type derived from integer is assignment compatible
with any type derived from real.

P6. The types of all constants (simple and structured) are
determined from context.

There is no way to avoid this, given P5 and the fact that variables of different
types may have the same value set. Continuing the exawple, if the statement "a:=~4.7"
is legal, then by principle PS5 the constant "4.7" is of type speed; but if "x:=4.7"
is also legal, in this case the same value has type weight. To reconcile these
cases, the type of a constant must be permitted to be a function of its context.
(Note that P6 paves the way for the introduction of other types of structured
constants, e.g., record and array constants; the proposed BSI type equivalence
definition does not extend so easily.)

P7. A created type inherits all of the predefined operators on its
underlying type, but none of the user defined functions or
procedures.

This principle is admittedly a compromise. Since the ground rules forbid syntactic
extensions, the promotion of operators to the new type must be automatic, and the
only issue remaining is which operators should be promoted. A primal set of
operators is specified in Standard Pascal; this provides a natural partitioning. (If
user defined functioms and procedures were promoted as well, ambiguities would result
which could only be resolved through explicit typing of constants.)

An operator in the language (e.g., +) consists of a semantic action (e.g.,
addition) and a "signature", a template giving the types of the arguments and result
of the operator (e.g., integer + integer ~> integér). A user~defined type extends
the set of operators available to a program, implicitly creating new operators from
old ones by combintng the old semantics with new signatures; each new signature is
obtained from an old one by uniformly substituting the new type name for all
occurrences of the base type {n the old signature. For example, all programs will
initlally possese an operator + defined by

+ == gaddition; real + real -> real
and in a program containing the declaratfons of speed and weight above the operators

+ == additiom;
+ == addition;

speed + speed ~> apeed
weight + weight -> weight

are aleo available; but it would be impossible to add a “speed" to a "weight” or a

"real".

With some information about context, these principles are sufficient to deduce
the type of an expression or subexpression, or to select the correct operator for an
overloaded operator symbol. Given

IF 3 < round(x/4.5 + 3.0) THEN...
the operators in the boolean expression must be

< -
round H
+ == additiom ;
/ == divide ;

less than; integer < integer -> boolean
weight -> integer
weight + weight -> weight

welght / weight -> weight

and the constants 4.5 and 3.0 must both be of type weight. In a few cases involving
only constants, it may not be possible to deteraine the conatituent types, but the
correct action is obvious, e.g.,

IF 3 IN (1,5,7,12) THEN...

does not permit the determination of a unique type either for the set or the base
type of the set elements, but the value of the expression smust be false in spite of
that.

P8. A subrange is a global constraint on the set of values aseumed
by a variable; it does not create a new type.

Subranges are used for many different purposes; sometimes it would be useful for them
to be distinct types and sometimes not. For this reason it is a good idea to
accomodate both usages——1if there 1s a simple way to do eo. At this point I adamit to
bending the rules, and introduce one minor change to the Pascal syntax, in the form
of a typed subrange. A declaration of a variable

i tinteger 1..10

means that the type of 1 1{s integer, but its values are constrained to the closed
interval 1..10. A typed subrange consistes of a type name followed by a subrange
contained in the value set of the type. If the type name is omitted, it is assumed
to be integer. If a typed subrange appears in a variable declaration, the variables
have the named type; but if the typed subrange appears in the TYPE eection, it
participates in the creation of a (range restricted) new type, just as required by
P3. For example

TYPE
hour = 1,.24;
VAR
. i siinteger;
amn shour 1,.12;
pm thour 13..24;
h thour;

The varlables am, pm and h are all of type hour, and the asaignments "h:=am" and
"h:=pa" will always be valid; "am:=pm" will never be valid because the value sets of
am and pm are disjoint; "am:=i", "pm:=i" and "h:=1" are all prohibited by type
aismatch.

LT# SM3IN TVISVd

086T "HIYVW

h9  39Vd



LA A X X XX XXX E X XXX B &

o
FIXING PASCAL'S 1/0 by Richard J. Cichelli 2:
* * * * * There have been a flurry of articles advocating modifications to Pascal's [
file facility to improve its functionality for input/output. Here, questions -
regarding terminal I/0 and relative record 1/0 will be discussed. =
These, principles lead to a view of types very differeat from the BSI/ISO Many criticisms of Pascal's file facility contain arguments that Pascal's =
Working Draft. It 1s a much more restrictive world, emphasizing type safety at the files don't support the full data set manipulation capabilities of the host's (%]
expense of flexibility. I suspect that neither approach is clearly superior for operating system. An alternate view of the situation is to ask if the problem »
“general purpose" use, but the reader can form his own opinion. to be solved can have its solution cleanly specified as an algorithm in Pascal. e
If so, request that the Pascal compiler/system writer provide an implementation
Finally, & suggestion for controlling name proliferation appeared in an complete enough to run the program efficiently. In short, buy compilers and
entertaining paper by Robert G. Herriot, "Towards the {deal programming language"” computing systems to run your programs rather than write programs to instruct
(SIGPLAN Notices, V 12 N 3, March 1977). Herriot proposed the use of English your {particular) computer.
articles ("the", "a", "an", etc.) and adjectives to create variable names. With this Wirth created Pascal files. In the Revised Report Section 2, paragraph 10,
syntactic mechanism, the fragment Hirth defines them as sequences of components of the same type. Although an
implementer may map Pascal files into sequential data sets, this isn't required
TYPE by the definition. The Report doesn't seem to require that the ideas of I/0
car = (ford,GM,volkswagen); and files be associated. A valid Pascal implementation could exist on a system
VAR which lacks backing storage and a third generation file system. If this is the
a car icar; case for your system and you still can run your Pascal programs, what do you
a sports car icar; care? Besides, future data base oriented systems may avoid the redundancy of
a compact car icar; a "file system". The problems of named data sets and directories are obviously
a blue electric car :car; best dealt with in terms of local predefined (not standard) procedures.
would declare four enumeration variables, referred to in the program text as "the of E?;elgg;?ég ;n‘z:ita??lzu‘:p#;xéRig?;: Ps\:sg‘gnséi():iZ?S(s:zl])s;'?‘tsjc:uvs'zeg;:]s;ﬁE?al
car", "'the sports car", "the compact car” and "the blue electric car". Thus names procedures and functions. Since sequences work and Pascal has appropriate fa-
for varisbles can be directly manufactured irom type names, frequently impioving the cilities for manipu}atiné them {i.c. the Pascal file piiwntive.), it would be
program’s readabilicy. very strange if you couldn't make Pascal talk to terminals. Wirth specifically
mentions them in the first paragraph of section 12 and, guess what, many imple- =
mentors have succeeded in implementing exactly what the report calls for and >
having facile terminal interaction as well. One of the techniques is called &
"lazy 1/0" and it is fully detailed in Pascal News #13. ~
There are those who want to put random I/0 or "direct access files" into —
Pascal. What's Pascal missing? Surely not random access. In the Report sec- 2
o

tion 2, paragraph 6, the array is discussed and specifically called ¢ randonm

access structure. “But", you say, "I can't fit big direct access files in

core". Every implementation of Pascal is likely to have some restrictions.

[ ] [7 l I7 | | | i l [ I [ ] | l Perhaps an array will need to be stored on bulk storage. Would you embed this
limitation in the language and in your algorithms and programs? [f you need
to worry about a hierarchy of memory access facilities in these days of virtual
memory, etc, then a pragma or compiler directive might be the appropriate mech-
anism for suggesting to a particular compiler that certain data be placed on
backing store. Note: There is no prohibition to passing arrays (e.g. an im-
plementation relative records I/0) as program parameters. See the Report sec-
tion 13. Program parameters can reference any external object. It is only
suggested that these are "(usually files)". Thus arrays and pointer based
data structures can be external objects to Pascal programs. (The "(usually
files)" reference has been removed from the current draft standard document.)

Although doing relative record 1/0 with Pascal arrays may seem strange at
first, adding the unnecessary notion of memory hierarchies to the language is
far worse, The IBM System/38 has a uniform 48 bit addressing mechanism. A
System/38 applications programmer does quite well while being unaware of the
storage location of his data whether it be cache, core, disk buffer or on disk.
1f the 38 can be said to auger the future, then certainly Pascal shouldn't take
a step backwards and introduce concepts which provide no additional functionality
In summary, fixing Pascal's 1/0 only requires implementing what the Report

suggests.

'TXIXXEE R X X R KR & B B K

99 /Y



JAanek DEMINIT, M.SC
JOANNA WISNIF WEKA
Institute of informatics
University of Warsaw
P.O.Box 1210

00-901 Warszawa

POLAND

Simpascal

Introduction

This arlicle presents a new exiension (called Simpascat) to  Pascal. The goal of this
extunsion was to provide facifities for siimuialing discrete time systems in the way similar to
the one adoptad in Sl This goal has been aclieved with no changes in the original
Pascal compilers, but rather by use ol some runtime roulines. Simpascal has been
implemented on CDC Cyvisrnsa and IBM 360.

Background

Simpascal was designed as a part of the OSKit Project (simulation of operuling systems
{1h at the Institute of Informalics, University of Warsaw. Those exlensions were necessary
since existing slandard Pascal faciliies didn't allow one to write a simulator in this language.
The reason for creating a new toot instead of using Simula was mainly better perforinance of
the Pascal object code. Besides, all other parts of the project (data input preparation and
output analysis) had been already wiitten in Pascal.

A general design of Simpascal and its implementation on the CYBEN?a were made by
Jarek Deminet, while some improvements and the 360 version were prepared by Joanna
Wisniewska. A standard 1'ascal compiler was used on the Cveen/s. 360 compiler was
produced at the Institute of Computer Science, Polish Academy ol Science. The whole work
lasted approximately 6 weeks.

Description

A simulator in Pascal (as in Simula) consists of some number of coroutines, each of
which implements one process. At any given time one of them is active and the others are
suspended. Some of the latter may be ready to run and wait in a so-called Sequential Set
(SQS), other are blocked. SQS is ordered according to increasing time, which is an attribute
of each process. Full description of this idea may be found in {2]. From this point on, a term
routine will mean either a coroutine, subroutine or the main program, while a subroutine will
be either a procedure or a lunction.

In order to provide all expected functions the following subroutines were implemented:

function Create (procedure P):covroutinelDd;

Creates a new process {(corouting), wilh e same altributes and the body as in the
pracedure given as a parameter. This corouline is started; after an initial pait it
shouid calt Hhetach (see below). Contsol then returns to a creator, and the function
retiens as its value o umgue coroutine identificr. The first youtine calling  this
function is calted a 100t of the whole set of coroutines. There 1s a restriction that
Create may be later called either by the oot or by any other corouting, but not in
its initial part (ie. no nesting of Create culls is allowed).

procedure Netach;
Finishes an initial part of a corouting and retuwns control to its creator.

procedure Start (C:coroutinelDd; maxtime:rcal);
Starts the coroutine €, thus initiating the whole simulation. Il should be pointed that,
unlike in Simukt, an 100t is not a corowline itself and may be resumed only after
finishing the sinidation. Simulation ends as soon as there is no process in the SQS
with “its- time  less.then \hg:max | ime parameter of Start
This routine may be called only by the root.

procedure Activate (C:coroutingld; delay:real);
Makes the coroutine C ready, e inserts it into the SQS. Its time will be equal to the
time of the currently active (current) coroutine increased by delay. It delay is
negative, thon the corvuting € will be resumed immedialely (becommg active), and
the current coroutine will be suspended.

procedure Pass (C:coroutinelD);
Acts simitarily to AcLivate (C,-1) , but also removes the current coroutine from
the SQS.

procedure Cancel (C:coroutinelD):
Removes the coroutine U from the SQS. If that was the current coroutine, the next
coroutine tromv the SQS is resumed.

function Time (C:coroutineld):real;
Returns time of the coroutine C.

procedure Hold (increment:real);
Suspends the current coroutine, increases its time by incrementl and resumes the
first coroutine from the SQS.

function Ihis:coroutinelD;
Returns an 1D of the current coroutine.

There is one very unpleasant and artilicial restriction for a call of the so-called special
routines, which may change an active coroutine {f ¢ Activate, Pass, Cancel and liold). if
any of those subroutings is called from a Simpascal subroutineg, called in turn (directly or
indirectly) from a coroutine, then all subroutines down to the level of the coroutine will be
immediately termingted. That means that the coroutine is suspended and reuctivated always
at its own Jevel. This concept was called husking and is necessary to ensure stack
consistency.

Implementation

The data structure on which Simpascal subroutines operate is very similar in both
implementations so it will be presented here in a relatively machine independent form.

LT# SMIN TYISVd

0861 “HIY¥VMW

99 39vd



Each instantiation of every Pascal routine is defined by a segment on the stack (the
routine is called an uwner of this seyment). Each such segment (except the first o ,
corresponding to the main program) consisls generally of two parts:

Environment delinition
Contains all information necessary to refer non-locat cbjects, to safely execule a
return jump, and to perform an error handling action it necessary.

Local data
Contains local variables (which include also parameters of the call, compiler-
generated auxiliary vanables and space for registers saved in case of further routine
calls). Generally, this part is of no interest for Simpascal, except tor regisler saving
space.

A base (an address of the fisst word) ol the segment of the current 1outine is pointed by
one ol the registers (a B register on COC, a yeneral purpose register on 1BM), which will be
called a Base Hegister (BRey). Also the lirst Iree location ubove a top of the stack is pointed
by a register (Top Hegwster or TReg).

in case of ordinary Pascal subroutines information in the environment definition is as
foliows:

Static Link (SLink)
Points to a base of the segment defining the latest instantiation of the routine in
which the segment's owner was declared. A chain of those links defines an access
path to ail non-local objects.
This link is crealed always by the caller, according to its own access path.

Dynamic Link (DLink)
Points to a base of the previous segment on the stack, ie the segment
corresponding to the routine which called the owier of this segment. it is used to
restore the BReg before return and to produce a Posl-Mortem Dump should an
error arive.
This link is created by the routine itself using the old value of BReg.

Return Address {(RAddr)
Contains the address to which control shuld be transferred in a return jump.
This address is provided by a caller (passed through a register).

Figure 1 presents the general struclure of the Pascal slack.

The same data structure had to be adopled in Simpascal, since the code of coroutines
was to be the same as for normal subroutines. Several assumptions had to be made,
however, to ensure a consistency of the struclure:

All coroutline segments occupy a conliguous space on the stack, directly above the
segment delining the root of the system (there may be no other segments in
between).

The stack of only one coroutine at any particular time (the active, or current coroutine)
may consist of more than one segment. This would mean thal no action which
implies a change of the active coroutine may be underiaken from any level other
than the level of the coroutine itsell. To allow crealing of user-defined control
transler subroutings the concept of husking (described above) was adopted. Its
implementation is very simple: any special subroutine removes from the stack alt
segments lrom above the block of the corouting segments.

[{ITCVIES

Current 1outine

Dt ink

Bleg ___ ]

SLink

Previous 1ouling

DLink
St.ink

| DLink
Stink

Main program

Figure 1. Pascal stack structure.

| (3 TP T ——
Subroutine
BRey o DLk B
Corouting
Coroutine
seyinents

Dhink

e e g

Nuguitive pait

Main

Figure 2. Simpascal stack (only some parts shown)

LT# SMIK TVISVd

0861 “HOYVMW

LS

{9



The seqgment for each corouting was changed in 8 manner invisable to ordinary routine
code. First, a aegative parl was adkdded it contans a restarl addiess for an inactive corouline,
and also some additonal wiormation (time:, slatus and sonic pointers) used by routines
which hamlle and sequence proc .o The meaning of some standard ficlds was also
modilied. Sice the asstuption s (il o coroutine will nover execate a return Juimp (because
it would destroy the stack structine), HAddr points to an ercor-hindling  toutine.

DLk, in turm, no longer points to the previous segmient on the stack, since it is not
intended to be used (o update the Blieg. Because of some funchions ptayed by DLink during
standard enor handting, 1t was decided that this it shoukd point to a base of the root's
segment.

Contents of BReg, Tileg and Stink were feft unchanged.
Figure 2 Hlustrades the yeneral stack structure in Simpascal.
in order to have such a stiructure, the following actions have 1o be performad by Creato
before calling a coroutine:
- setting BRey to a base of the root;
incrementing Tliey by the size of the negative part of the segment;

- setting St.ing accowding to infurmition which is always a part of the actual-parameter-
descriptor in a call-by-procedure in Pascal.

Results

Several programs have already been written in Simpascal and run on both machines,
fullilling all expectations. A comparison wilh Simula shows that a program in Simpascal
needs 50 10 80% less memory und 50 v 70% less lime. This is mainly due to much simpler
memory structure allowing better performance of the code.

Reterences

{1} Leppert M., Madey J., Schroff R. : /IS Status Heport
Report 7739, Technisches Universitut Munchen, Munich, Germany;
Report 63, Instytut Informatyki Uniwersytetu Warszawskiego, Warsaw, Potand

(2] Simula 67 Common Base | anguage
Publ. no. $:22, Nurwegian Computing Center, Oslo, Norway

IO W Y e e e ok

L B R R X K R R T g

The University of Tasmania

Postal Address: Box 252C, G.P.0., Hobart, Tasmania, Australia 7001

Telephone: 23 0561. Cables ‘Tasuni’ Telex: 58160 UNTAS

N AEPLY PLEASE QUOTE
FiLE NO
IF TELEPHONING OR CALLING

ASK FOR

Some observations on Pascal and personal style

Arthur Sale

Tasmania, 1979 June

Background

Recently, arising out of a course I gave for microprocessor engineers and
their possible use of Pascal, I had to write a program of around 800 lines
to control a hot-plate assembly (as might be installed in a home with
provision for switching the hot-plates individually up or down at selected
times). The purpose of the program was to demonstrate the viability (and
superiority!) of Pascal for microprocessor purposes over assembly code or
Fortran. The experiment was a demonstrable success, taking one man-day to
write together with its correctness proof, and another man-day to transform
the abstract program into one having some useful properties for micro-
processor Pascal compilers and run-time support. The experimeit will be
reported elsewhere; by contrast the writing of the consequent paper has
consumed over a man-week, and nearer two...

However, in the course of writing this up, | came across some interesting
facts I should like to share with the readers of Pascal News. They relate
to personal stylistics, and use of Pascal's features. None of the reported
statistics here were considered specifically while writing the program:
they reflect a personal style.

LT# SMIN TVISYd

0861 "HO¥VW

39vd

89




Identi fiers

The program contains 120 identifi p . s
Fransfo?matjon to eliminate a tas:;?' ;:g ?2§gi:bjis£:2b3t§0n5equence of a
identifiers is shown in Figure 1. ution of the

It is interesting to note that approximately 55% exceed 8 characters in
length, and approximately 27%% exceed 10 characters in length. These
correspond to the significance limits of the Pascal Standard and the
Control Data Cyber compiler. The Burroughs B6700 compiler I used has,
of course, no limit on significance.

bl i

] qi&_ L] | Since the B6700 compiler is good in this respect, it is possible to write
ik programs which work on the B6700, but which give rise to compiler error
messages (or worse, altered and undetected scope renaming) on systems with
i limited significance. How often does this occur? Fortunately, the
STANDARD option on the B6700 compiler checks the possibility of any such
events. The answer seems to be: surprizingly often. In previous programs
I have seldom been able to escape changing an identifier name to avoid
problems elsewhere, and it happened twice in this program. The instances

RS
==
===
5:%

5|
=
==

===

=

i were:
nunberofevents {an integer variable}
NumberOfPlates {a constant, altered to NoOfPlates)

&
=
=

! ”iﬁf i ‘ DisplayType {the type of the display register}
i HHR { i DisplayTime {a procedure, altered to DisplayATime)
HT" i ﬁ% Qkﬁ 1 draw the conclusion that any compiler that has a significance limit greater
than 8 characters ought to perform the same checks; software I receive from
}E' f elsewhere often exhibits the same problem. T also conclude that the
8-character limit is a mistake, and should never have been introduced into
Pascal.

==
ﬁ T
=

] I The B6700 compiler also produces as a by-product of this checking a list

I i of instances of renaming under the scope rules. None were reported in this
program at all, which surprized me. Usually © and j crop up with mono-
tonous regularity, but in this case it appeared that the lesser numeric
orientation and the program structure minimized this.

HhHAHT: HHHEHEIHT

100%

Letter Cases

HH i § As the examples above indicate, the compiler accepts either letter case in
}E accordance with the Pascal Standard, and I write programs in predominantly

Hi

il T
it lower-case letters. 1 dislike the practice of capitalizing the reserved
words as it has a bad effect on readability for me. However, during the
course of this program I found myself falling into a practice which I had
HH i never used before, but which seemed to be useful. 1 offer it as an
{ 1 example of the differences in personal style that can arise with a little
thought devoted to stylistics.

i

[7) The practice I adopted, more or less by chance at first, was to write
variables in all-lower-case, as in mumberofevents, but constants, types,
and procedures in mixed-cases, as in NoOfPlates or DisplayATime.
Rationalizing it after the event, I noted that variables often have
shorter and less complex names than other objects and thus may have less
need of extra lexical cues, and procedure names are often the longest and
§ most complex. Sometimes these are a verb-phrase, while variable names
i are more noun-like.

The practice improved my understanding of the program, mainly because 1
could detect in expressions which were variables and which constants.
Such slight cues are worth a lot more to me than emphasizing reserved
words (which I know very well). Example:

if (time = LastMinuteOfDay) then begin

I am not yet sure whether this will be a stable feature of my future style.

£LT# SMIN T¥ISY4

0867 “HIYYW

69 39vd



Line Layout

I used my usual line layout and indentation rules, reported in Sale [1978],
and had no need to edit or correct any semicolons or ends. A consistent
style minimizes these trivial but annoying errors.

Comments

I classified the comments into three categories:

LT# SAIN TYISYd

(a) Marker comments, used to assist picking out corresponding
points in a program, typically attached to an end to show 50 ¥+
what it is the end of, or to pick out a procedure name by b HI
underlining. Little semantic content. ﬁm!“mm i

(b) Procedure heading comments. These have considerable IR i filigi
semantic content, and outline the purpose of the procedure. I i i i =§"

(c) In-text comments, which either give additional information
relating to the execution, or explain definitional points.
They vary all the way from a hint:

i
mip
i

{Midnight changeover}

to an assertion:

{Re-establiehing the invariant:
Ri = "All events up to and including the one pointed
to by the 'preceding' pointer are due to ocour
before or simultaneously with the new one. Also
if state=Exit there are no more records that
satiafy this criterion.”

The comment characteristics are shown below. Procedures and Functions

x
Kind of comment no lines % lines Having arrived at a suitable transformation level by eliminating tasks from ;
spanned spanned the conceptual solution and substituting interrupt-driven procedures (Yes, ‘;‘_
1 know they aren't standard), the resulting program had 18 procedures/ ~
Marker 36 36 19% functiens, including the main program. Other statistics are: =
Header 18 67 358 0o
In-text 67 87 46% i
* Procedures Functions Program
TOTAL 121 190 100% 15 (83%) 2 (11%) 1 (6%)
The closing comment marker ("}") was always the last non-blank character
of the line it appeared on. Since one-line comments make up 80% of the Parameters: 0 1 2
total number of comments, and 51% of the total number of lines spanned, 13 (76%) 3 (18%) 1 (6%)
here is support for the idea that comments delimited by end-of-line
require no more keystrokes than brackettea comments. (Apart from other,
better, reasons for preferring them.) The low frequency of parameters is explained by the nature of several of
: . s R R . the procedures: they are refinements. In fact six of the parameterless
The distribution of comment lengths, shown in Figure 2, emphasizes this. procedures are called from only one place each, and a microprocessor
It is certainly influenced by my habit of putting correctness assertions engineer might well apply a transform to put their code in-line and their
and hints in the code body, thus reducing the size of procedure header local data in the caller's stack. Personally, I exert pressure on compiler
comments. (The comments often share lines with code, so do not make the suppliers to make their compilers do it automatically: detecting the once-
mistake of assuming that the program contains 190 lines of waffle together only call is not difficult for a multi-pass compiler. On the B6700 such a
with the 157 blank layout lines). transformation would save 54 bytes of code out of a total of 2304 (2.3%),
and would also speed up the execution slightly.
)
The maximum level of procedure nesting is three, and this occurs 7 times. :’.,
This is astonishingly low for me, since my refinements often creep up m
into the 10 to 12 levels deep. Analysing it after the event, I conclude
that the low nesting level here is due (a) to the complexity of this 3

problem being in task interlocking, not in algorithm complexity, and (b)
to several refinements being pushed to outer levels for use in several
contexts (by the sub-tasks).

NSRRI A




! Ypes summary

As might be expected, real numbers are not needed in this problem.
The usage of different types in the program is shown below:

definitions uses in var or type
boolean (1) 2
integer (1) 0
char (¢3) 0
real (1 0
user-defined scalars 6 7
subranges of scalars 1 1
subranges of integer 9 30
records 1 1
arrays 3 8
sets 4 8
pointer types 1 4
files 1] 0

The absence of integers arises naturally because no negative numbers occur
in this problem, and because the range of every integral value is predict-
able. Only innate laziness allowed one of my favourite types:

Natural = 0 .. Maxint;

in to substitute for the type of a value parameter which ought to have had
a special type declared for it in the outermost block:

TwoDaysWorthOfMinutes = 0 .. 2879;  {2%24*60 - 1}
I salved my conscience by adding a comment to this effect, which probably
took more time doing it right...

Of some interest is the ratio of user-defined scalars to uses of pre-
defined types (7 : 2). This is & measure which 1 take as roughly indicative
of a switch from other language thinking to Pascal (or abstract) thinking.

The problem isn't big enough to draw any more conclusions.

Boolean expressions

Some people, on seeing my programs, adopt a knowing look and say, "You used
to be a Fortran programmer, weren't you?" and point to an example like:

if (eventlist = 0) then begin

Since this is total misunderstanding, it deserves a few words. I usually
put parentheses around every relational expression I write. The prime
reason is that I find it greatly improves the readability of the program
in that the limits of some complex expression can be more readily found,

2 for example in; Open Forum for Members

if (modulocounter in pattern|plate[i]]) then begin
But having done this for a long time, it confers several other benefits:

(a) I almost never make mistakes in writing expressions which the
Pascal syntax will parse in a way I didn't intend. (The few
priority levels are well-known as a trap).

(b) 1 have to devote less thought to trivia while writing progranms,
and therefore more thought to correctness proofs, simply
because I use codified rules.

To illustrate the point, the same thing happens in the following example:
IsT1Beforel2 := (t1 < t2);

I

N

| |

|

The purpose of this little letter is to give you some insight into
some personal stylistics in the hope that you will examine your own
equally carefully and ask yourself whence they came and why.

Pascal is no language for nongs who mindlessly copy others. 1 also
hope it may give some ideas to compiler-suppliers on the sorts of
things I do. If you ever want to please me, here are some hints,
Preserve the abstractions and make any limits on what I can do at
what I call virtual infinity....

LT# SMIR YISV

0861 “HIUVH

1. 39vd




Andy Mickel January 23, 1980

Yalc UanCISlty New Haven, Connevsicus 06510 these systems are complex by definition, and thus a full DISPOSE is

probably not excessive. In this case release effectively signals the
SCHOOL OF MEDICINE garbage disposal system to function.

333 Cedar Sirees

Section of Laboratory Medicine

January 23, 1980

Andy Mickel :
University Computer Center
University of Minnesota
Minneapolis, Minnesota 55455

Dear Andy:

Yesterday 1 called and spoke to Rick Marcus about a bug I have found in
ID2ID. My version is attached, together with the data that showed the
fault, and the symbol table progression in the original system.

Please consider this as a letter to PUG, and pass it on accordingly. I
attach a second copy for the purpose.

On Pascal Standards, I have several observations. First, based on Bob
Fraley's HP3000 Pascal Compiler, I feel the need for a standard procedure

PROMPT (FILE)
which will have the effect of a writteln without causing a line-feed or
carriage-return. This is required for interactive use, where the under-
lying system buffers output. The procedure will flush the buffers.
Wherever the /0 system is direct, the procedure is not needed and need
not generate any code.

1 firmly approve of the "otherwise” clause in the case statement, and
also feel it should be extended to variant records. 1.E.

A « Record
Case B : Type of {

¢ : Ctype ;

b : Dtype
Otherwise Elsetype })

DISPOSE is often replaced by Mark/Release, which should be an available
option in the standard. DISPOSE must always require a garbage collector, -
and thus a good deal of run-time. However, systems not implementing
dispose should generate a null procedure for source compatibility, and
similarly for Mark/Release. Note that implementation of Mark/Release

on systems that provide (new) storage to various processes from a common
pool must implement the equivalent of dispose for a release. However,

An extension sorely needed is simple arithmetic in constant definitions,
allowing all compile time constants to be slaved to a single definition.
Similarly the use of ORD and CHR functions in constant definitions
would be useful.

Implementation of goto's out of procedures is virtually impossible (at
reasonable cost) on many machines, The HP3000 is an example. I would
therefore recommend that the standard does not require these, and that
they be considered an extension. Logically, I have never found such
goto's necessary, and in addition such use customizes code segments to
any overall program, preventing direct re-use.

I am also running the USCD Pascal System, VER 11.0. Users should be
warned that, as supplied, this does not detect integer overflows, (at
least on 8080/280 Systems), and that the complement of -32768 is 0!!
with no warning.Some stack overflows can occur without trapping in
addition, My revised interpreter cures these problems, when many
system programs proceed to crash on integer overflow, and thus the over-
flow check has been made switchable. The USCD System does not detect
EOF on the remote files, and thus cannot read text files remotely with-
out considerable contortions.

Sincerely,

—

[—{,;///{’ﬁ 7z s

4
Charles Falconer
Chief Instrument Engineer

CF:tmm

Enclosures

0867 “HINVMW LT# SMIN TVISVd

2/ 39vd



Carnegie-Mellon University Department of Computer Science
Schenley Park
Pittsburgh, Pennsylvania 15213

January 29, 1980

A.M. Addyman

Department of Computer Science
University of Manchester
Oxford Road

Manchester M13 9PL

England

Dear Professor Addyman:

I was delighted to see the proposed Pascal standard in Pascal

News. In general, I think the proposal is excellent, However,
there were a few points that troubled me.

- Textfiles. 6.4.24 seems to require that every textfile
end with a linemarker. Is that intentional? If so,
must closing a file(used for writing)force a linemarker
to be output if one does not already end the file?

~ Pages, It seems bizarre to include a standard Page
procedure without specifying the effect on the file
or including a procedure to test for end of page .
1 propose making the procedure optional, but 1f it is
included, require that a page marker be written which
is (like & linemarker) read as a blank, and that an
Eop (end-of-page) predicate be included as well.
Additional questions: Should Eop imply Eoln? Should
Page force a Writela automatically?

The CASE statement. I must say I am surprised the
OTHERS clause was not included in the standard., I'm
equally unhappy (but less surprised) that subranges
were not to be permitted in the case-constant list.

- Numeric output. 6.9.3 requires a leading blank for a
number that fits in the output field, while no leading
blank is required if 1t does not. 8o, in the case of a
number whose width is the same as the fieldwidth, the
number is printed out in just that fieldwidth without a

Dear Pug

leading blank. 1 supgest vewrlting the specification
so that this is clear - by noting that @ rather thaan
1 leading blank is required.

I have seen the notation Write(Val: 1) used to mean: Use Lhe
smallest possible fieldwidth. A cute use of the specifications,
but its obscurity is not in the spirit of the language. Perhaps
Write(vVal) ocught to print Val in the smallest fieldwidth possible
(no leading blanks e¢ither!) while a fived fieldwidth would be used
only if specified. This would unquestionably be the mosti pleasant
solution for most users, especially novices,

The Write(Val: 1) idiom is deficient for another rcason. Many
implementors have chosen to implement output in an undersized field
by writing out asterisks. A good case can be made for this, and 1
sugpect many Pascal implementors will continue to do so despite the
standard.

Sincerely,

T

Eliis Cohen

BRITISH COLUMBIA HYDRO AND POWIER AUTHORITY

Red Stripe Computer Trailer
Gas Division

3777 Lougheed Highway
Burnaby, B.C.

V5C 3Y3 CANADA

1960 Ja~very 20

I wrote a while ago about banning the marriage of Pascal and EBCDIC.
1 think I stated a decent character set should have the following property
ORD('9*)-ORD('0') should be 8" That should read “ORD('9')-ORD('0') should be 9".

If you decide the publish that letter, please correct the mistake:’
Please do not publish this letter.

Thanks

LT# SH3N TYISYd

0867 “HIYYW

¢ 3V



WINTHROP PUBLISHERS, INC., 17dunsterst., cambridge, mass. 08138 tel: e17.288-1750

January 8, 1980

Professor Andy Mickel

University Computer Center

227 Experimental Engineering Bldg
208 SE Union Street

University of Minnesota
Minneapolis, MN 55455

Dear Andy,

I'm a little concerned about some possible unintended
effects of your brief book reviews section on page 8
of Pascal News, No. 15.

You quoted a table from a review by Jan Hext, of the
University of Sydney, comparing Pascal textbooks in their
coverage of the language, I am concerned that, taken
out, of context, that table may scare potential readers
away from our book by Conway, Gries, and Zimmerman,

A PRIMER ON PASCAL, the second edition of which is due
this spring.

There is no question that the coverage of Pascal in that
book is not nearly as extensive as many other books
(although in the new edition it will be somewhat more so),
but taken out of context, it looks like you are rating the
book in general as “"poor." The reviews in my files
indicate, of course, that the book is arguably the best
introduction to programming using Pascal as a vehicle,

and for such a use might well be much more appropriate than
a book which is a more thorough rendering of the language
but less helpful in learning to program. So, while I do
not quarrel for a moment with Professor Hext's analysis

of what this book is not, I wish to rush to the barricades
to reaffirm what, on the other hand, it is.

Thanks for listening.

&ugatds'

Charles F, Durang
Editor, Computer Science

CFD/mw

-> B e e sane R it sk e e SRR L S R e

SOPHIE DAVIS SCHOOL. OF
BIOMEDICAL EDUCATION

THE CITY COLLEGE
OF
THE CITY UNIVERSITY OF NEW YORK
NEW YORK, N.Y. 10081

Wednesday, January 30th, 1980 (212)690.6629, 8255

Rick Shaw

PASCAL User's Group

Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342

Dear Rick;

Enclosed is ny personal check for $26.00; please enter ny subscription/
membership to PASCAL News for this academic year 1979/80, and also send the
previous two years' back issues $ - 16. I would be glad to pay Xeroxing and
mailing expenses (within reason) if somebody could furnish copies of your
extinct issues 1 - 8.

In our mammoth CUNY University Computer Center (Amdahl 470/V6 and IBM 3033
under 0S/MVT and ASP; IBM 3031 under VM and CMS), Stony Brook PASCAL 1.3 is
standard, and Version 25 was just added to a test library last week. (I gather
from the documentation that both are rather l1imited in complex applications -
for example, no external files...) Although I know of no campus among our 20
where PASCAL is the prime teaching language, faculty and student use is clearly
on the rise; we've just brought up 2 PASCALs on a PDP-10 here in the CCNY
Science Building.

I am involved in bringing up an orphan Z-80 microcomputer from the defunct
Digital Group in Denver; besides opscan test grading, the primary application
will be bibliographic citation retrieval from a hybrid collection of about 8,000
articles. 1 am presently working up the necessary software package for this
operation in PASCAL, using bit-string inverted 1ists hung from a B-tree.

With the possibility of a brief trip to Switzerland this April, I have
considered arranaing a visit with Professor Wirth: if anvbody else has done
s0, expecially recently, I'd love to hear from him as soon as possible. PASCAL
was my native language at SUNY Stony Brook, and I'm very thankful for that.
I'm eager to meet other New York City PASCAL users.

Sincerely yours;
hl

/.' o ‘
' («’ i R N

Alan N. Bloch, M.P.H,
CCNY Biomed J 910 Cl

encl.

AN EQUAL OPPORTUNITY EMPLOYER

LT# SMIN TYISY4

086T “HOYYW

h/ 39vd



KERN INSTRUMENTS, INC. TELEPHONE:
GENEVA ROAD * BREWSTER., NEW YORK 10309 (#14) 279-5098
Kern Tevex:
2869624

January 15, 1980

Mr. Rick Shaw

Digital Equipment Corporation
Pascal User's Group

5775 Peachtree Dunwoody Road
Atlanta, GA 30342

Dear Rick:

While renewing my subscription, I am taking the opportunity to say
a few words.

{ have used two Pascal systems in my work here; initially, a
Northwest Microcomputer 85/P with UCSD Pascal, and now a PDP-11
with RT-11 operating system and OMSI, Pascal I version 1.1. Both
have advantages (and disadvantages). The UCSD operating system
(with CP/M utilities) was fantastic, especially the editor. How-
ever, 1/0 handling (1 wanted interrupts) was poor. With RT-11, I
can use all the I/0 facilities of this excellent operating system,
but OMSI doesn't support them very well. Hopefully, this will be
fixed in version 2 which 1s due any day now. I'm also disappointed
that several Pascal features I used quite heavily with the UCSD
system are not implemented in OMSI Pascal I, particularly the Pack
and Unpack functions. These are very convenient for formatting and
unformatting I/0 records used in certain peripherals.

I see almost weekly announcements concerning new Pascal compilers
and machines. Now that most of the established computer manu-
facturers have taken up the cause, we can say that Pascal has
arrived. So much so in fact, that I would not have resubscribed to
PUG if not for Arthur Sale's recent issue describing the Validation
Sufte. Congratulations to Prof. Sale and his group.

Now it's up to us Pascalers to encourage the compiler writers to
meet the standard and implement any extensions in an acceptable
manner.
Good luck, Rick!

Sincerely yours,

KERN INSTRUMENTS; [AC.

/
f

T. P. Roberts
Photogrammetric Systems Engineer

TPR: pm

T —- ecag——y - oy - - - -

- e e - . - s

Yl BRITISH COLUMBIA HYDRO AND POWER AUTHORITY

970 BURRARD STREET
VANCOUVER, B.C.

V6Z 1Y3

TELEX 04-54306

1979 December 31

LT# SKIN: YISV

Dear PUG
re: outlawing EBCDIC and Pascal marriage

I have tried to write some text tidying routines with the
University of B.C. Pascal compiler under MTS. It uses
EBCDIC as its underlying code. Arrgh!

ORD('Z')}-ORD('A') should be 25 in all decent Pascal implementations.
ORD({'z')-ORD('a') should also be 25. There should exist a magic
number m such that you can do lower to upper case conversions,
ORD('9')-ORD{'0') should be 8. (Even EBCDIC gets that right.)

ORD(' ') should be less than ORD('A’), ORD{'a‘), and ORD('0').

ASCII has these properties. EBCDIC does not. It is thus difficult
to write portable code.

1 suggest that any Pascal standard insist that an "excellent" rated
compiler provide a compile-time switch to insist that all internal
character codes be ASCII even if this means transiation in and out.
Alternatively, Pascals that live in an EBCDIC environment that wish

to manipulate all 256 characters should work internally on a

modified EBCDIC that has the above nice properties. A compiler

that could not provide this option could only obtain a “reasonable" rating.

0367 “HIRYY

To indicate the hornrors of EBCDIC, consider that none of the following
code works as you would expect.

if Cin ['a'..'z'] then S1; 1f C>= 'a' and C €= 'z' then S3;

for C := 'A' to 'Z' do $2;

It is also impossible to write (I hope I am wrong) decent hashing
algorithms and random number generators that are truly portable (ie.
give the same answers in all implementation Perhaps “excellent" rated
compilers should also provide some extra builtin functions for these
tasks. It wouldn't hurt to define their names and parameters now.

QLG\S G‘&.’\

Roedy Green

S P




% COMPUTER SCIENCE PRESS INC.

9125 FALL RIVER LANE
POTOMAC, MD. 20854
(301) — 298-2040

November 27, 1979

Dr. Andy Mickel

Editor

Pascal Newsletter

University of Minnesota

University Computer Center

227 Experimental Engineering Building
Minneapolis, Minnesota 55455

Dear Dx. Mickel:

In the 15th issue of Pascal News on page 8 you inadvertently omitted
the 1list for our book PASCAL: An Introduction to Methodical Program-
ming by William Findlay and David Watt in an article comparing the
avallable Pascal books, It was listed in the table at the bottom of
the page. We would appreclate it if you would correct this ommission.
Pascal: An Introduction to Methodical Programming is published for
the Unlted States and Canada by Cotputer Science Press, Inc. @ $11.95.
it is avallable and published throughout the remainder of the world by
Pitman Publishing Ltd., 39 Parker Street, london, England WC2B 5PB,

In its first year Computer Science Press has sold over 12,000 copies of
Pascals An Introductlon to Methodical Programming within the United
States and Canada. We also believe that a much more meaningful com-
parison and evaluation of books can be obtained by the basis of the
universities and colleges which are using it. Our book has been

adopted at over 50 schools within the United States and Canada including:

Arcadia Universlty

Albright College

Brock University

Broome Community College

Califoxnia State University at
Long Beach

Cariboo College

Case Western Reserve University

College of William and Mary

Dalhousie University

Dickinson College

Fairleigh Dickinson University

Framingham State University

Iowa State University at Ames

John Brown University

Kansas Wesleyan University

E. R. Lauren University

LeTourneau College

Loyola University

Lucas College

Marian College

Marquette University

Merritt College

Montana State University at Bozeman

Moravian College

Morningside College

North Carolina State University at
Raleigh

Northampton Community College

Northeastern University

Plymouth State College -

Purdue University at West Lafayette

Rollins College

Rosemont College

Sonoma State College

Southern Methodist University

Stanford University

Temple University

% COMPUTER SCIENCE PRESS INC.
g

9125 FALL RIVER LANE
POTOMAC, MD. 20854
(301) — 2989-2040

of Mississippi at University
of Oregon at Eugene

Texas Technological University u.
Thames Valley State Technical Coll. U.
Towson State University U. of tie Pacific at Stockton
Union College U. of Pennsylvania at Philadelphia
U,S. Military Academy at West Point U.of Saskatchewan

U, of California at Berkeley U. of South Carolina at Columbia
U. of Chicage U. of Southern California at Los Angeles
U. of Houston at Clear Lake City U. of Texas at Austin
U. of Maryland at College Park U. of Utah at Salt Lake City
U, of Massachusetts at Amherst U, of Washington at Seattle
Villanova University
WE INVITE ALL COLLEGE PROFESSORS WITHIN THE UNITED STATES AND CANADA
TO WRITE TO COMPUTER SCIENCE PRESS AND REQUEST A COMPLIMENTARY COPY

OF PASCAL: _AN INTRODUCTION TO METHODICAL PROGRAMMING. Please wrlte
on school stationary, identifying the current text, the course name
and number, as well as the anticipated annual enrollment, and we will
be happy to let you determine for yourselves which is the best book
for teaching Pascal.

We would also like to call to your attention our short course program
offered through our Computer Science Education Extension Division which
will offer 2-3 day courses on Pascal on:

March 24-28 at San Francisco
May 18-19 at Anaheim (preceding the NCC)

Thank you.
Sincerely yours,
Larturo B Fewolrmase
Barbara B, Friedman
, President
BFicw

LT# SMIN TYISVd

0861 "HIUVK

]
>
(<2}
m
~4
(=1




PRINDLE AND PATRICK ARCHITECTS: PLANNERS

MEMBERS THE AMERICAN INBTITUTE OF ARCHITECTS

October 17, 1979

Pascal User's Group

c/c Andrew mickel,
University ot Minnesota,

227 Lkxperimental Enyineering,
tiinneapolis, M 55455

ke: Fkascal User's Croup and Pascal Newsletter
Dear sir:

1 would like to gyet intornation on the Pascal User's Group,
especially, as soon &k possible to yet thie Pascal Nhewsletter,
including back issues if possible. 1 would 1like to join the
organization and tind out all I can a8 1 an contemplating
comnmitting this systen to extensive use of Fascal, although 1 an
not at  present & rFascal user. 1 woula lihke to learn something
about the availability of Pascal software, either to swap or
sell.

The company 1 work for ie an architecture firm which has a
PLpb=11/34 running K1-1l ana 7Tsx (TsX provides several virtual
RT~11 single job nonitors with some limitations ana sone
additions, if you are familiar with DEC's RT-11.). our
applications are Accounting, word Processing, and some statistics
and simulation. We hope soneday to get into sone graphics.
Right now there is an awful lot of awtul assenkler stuff around
here which nust one way or another Le transformed into sonething
hOre portable.

Another bit of background is that I am one of the firet users
of the Whiteswith's Ltd. C coapiler, which satisfies the

specification given in kernighan and Ritchie's book with one -

addition, which 1is that ditferent “typedef"s can have elenents
with the same name. 1I.e. there can be an A.x and a bk.x.
4ccording to Kernighan ana KRitchie, this is not allowed in
regular C, which is very peculiar (It can bLe disableéd in
Whitesuith's C ftor compatibility). whiteenith's alsc says they
have been usinyg their own UNIX-conpatilble 0O.&. (will run UNIX
binary prograns) for about a year now, anu will soun be selling
it for much less than the cost of UNIX. I estinate that one
(such as a very serious hobbiest) could have a quasi-UNIX system
within a year for under $10,00G. fThe rub is that Eell Labs is
currently tryiny to nake it appear as if UMIX user's society
Sottware cannot be spread around to non-nenbers, at least that is
the impression I get. But a nunber of sources from DEC to
Yourdan, Inc., to whitesnith's tell ne they don't have a legal
ley to stand on. but who will get the ball rolling?

I aon't know if all this interests you or not, but I thought
there was a fair chance it might, and that you might be able to
lead we to some help in finding or helping to establish services
that would do for C what you are doing for Pascal. My own
inpression is that C and Pascal are guite conplenentary, C being
a bettexr systems language, and Pascal being better for nany, or
even nost applicatiouns.

Sincerely,

Aol M

Hal Morris
System Manager

BRITISH COLUMBIA HYDRO AND POWER AUTHORITY
Red Stripe Computer Trailer
Gas Division
3777 Lougheed Highway
Burnaby, B.C.
CANADA V5C 3Y3 (604)298-1311 loc 372
1979 November 20
Dear Pascal Standardizers:

The key beauty to Pascal is that if you take a valid Pascal
program and randomly change/deiete/insert a character, there is a
very high probability that you will have an invalid program. There
is also a high probability that this invalidity can be detected by
the compiler at compile time. Ie. Pascal will catch typos.

One of the few exceptions involves the semicolon. Random!y
sprinkling semicolons can change the intent of a program as described
in the User Manual and Report on page 26.

if p then; begin S1; S2; S3 end is a surprise

To get around this problem (and to force everyone to use the
semicolon as a separator instead of a terminator as God intended), !
suggest making the empty statement invalid. In its place we would
invent the null statement.

The null statement would make programs easier to read:

if p then null else S1

case n of

2 x:=5;

3: null;

4: x:%

end

Other than that, Pascal is perfect and should be left alone.
However, why not let people extend the language in any way they want -~
by using pre-processors written in Pascal that produce Pascal code.
Now all we need is an ingenious general purnose pre-processor to
implement any goody your heart desires.

Lov 0(_‘\_\\

Roedy‘Green

LT# SMIN TYISYd

0867 “HIYVW

LL 39vd




THE ROYAL COULEGE OF PHYSILIANS AND SURGEONS Uf CANADA tE COLLEGE ROYAL DES MEDECING FT CHIRURGIENS DU CANAL

THE R. S. MCLAUGHLIN LE CENTRE D'EXAMENS
The UNIVERSITY of WISCONSIN- LA CROSSE EXAMINATION AND RESEARCH CENTRE ET DE RECHERCHES R. S. MCLAUGHUN
LA CROSSE, WISCONSIN 54601 {608) 765-8000
785-8029

FROTECTRILE SA MAJESTE LA KEINE
UNIVERSITY COMPUTER CENTER PATRON MER MALESTY THE QUEEN
JOHN C, STORLIE, DIRECTOR

HARVEY FOBSEN. ADMINISTRATIVE SERVICES

JOHN NIERENGARTEN. ACADEMIC SERVICES

LT# SMIR TYISVd

25th October, 1979

July 2, 1979

Mr. Andy Mickel

Pascal User's Group

University Computer Center; 227 EX
208 SE Union Street

University of Minnesota
Minneapolis, Minnesota 55455

Dear Andy:

Per your request for information on what we're doing here with Pascal, I
have the following.

We have a Hewlett Packard 3000 computer system which among other things
supports undergraduate computer sclence instruction. In the past six
months we have lnstalled the contributed compiler from HP labs made
available to the HP General Systems Users Group. The current version 1s
fairly complete, although it 1s somewhat slow because it is a P~code
system, which first translates into SPL (system programming language) and
then compiles and executes the SPL.

Nonetheless, for pedagogical reasons our computer ecience department is going
to teach Pascal. In fall 1979 we will introduce Pascal to three sectiona

of Computer Scilence 121, Programming in Algorithmic Languages, replacing
FORTRAN. This will introduce about 100 Computer Science students a semester
to it and will provide them with a tool which they will use through much of
the rest of their curriculum. Pascal meets a long unfulfilled need here

for a block structured, high level language for teaching which enables one

to teach proper programming structure.

Sincerely,

el /fi)?l}\;\_\“}« R
John A. Nierengarten,

Assistant Director

Computer Center

JAN:1h

c.c. J. Storlie

AN EQUAL OPPORTUNITY EMPLOYER

Andy Mickel

Pascal Users' Group
University Computer Centre
208 SE Union Street
University of Ninnesota
Minneapolis. MN 55455

Dear Andy (-1f I may?),

Thank you for returning my call yesterday regarding the
small print size of the PUG Newsletter.

1 find your reply that the reduced print size will
continue disappointing, of course.

Your remark to my secretary that you have only had about
four or five complaints about print size is of uncertain value as an argument.
How many people, disgusted by the print size, did not trouble to call? Bearing
in mind that your distribution is world-wide, many people rather distant from
Minneapolis might be slightly more reluctant to call than I was; I very
nearly did not cail.

I am always rather disturbed at the insistence on

uniformity in the name of technology, or efficiency, or cost. Surely people should

come first? Why not leave a few print-outs at full size, and ship those to the
feeble-sighted? You save on the cost of reducing and binding, at the expense of
a little extra organization.

I do apprectate that yours is a volunteer effort, run
with minimal staff. But are not PASCAL and its devotees worth it?

Yours sincerely,

Colin Park (Ph. D)
(Assistant Director).

P.S. In the case of PASCAL, some of us may even be prepared to pay a little
more for the privilege of not straining our eyes.

,//A

#-113 CLINICAL SCIENCES BLDG. UNIVERBITY OF ALBEATA, EDMONTON, CANADA T8G 2G3

0861 “HI¥VW

8, 39V




Pete 3oodeve
3012 Deakin Street, apt D
Berkeley, Calif. 94705

1979 Novemover 9

Andy Mickel

Pascal News

University Computer Center

227 Experimental Engineering Building
208 Soutneast Union Street

Upaversity of Minnesota

Minneapolis, Minnesota 55455

Dear Andy:

Willett Kempton mentioned, it his letter to you of a few
months back, that I was finishing up a new Pascal system for Data
General AQS installations, and ever since then I nave been
getting around to sending you a proper report. As the system has
been stable now for over a montn, it 1, obviously bign time to
finally get this note written.

¥e have actually had a version of AOS Pascal out 1n the field
for nearly a year now, but tnis 1s basically the Lancaster P4
Nova RDOS Pascal with a run-time system modified to mate with AQS.
The nev edition 15 exteasively rewritten, at both tne run time
and compiler levels.

The run time interpeter now takes full advantage of tne
Eclipse’s instruction set (rather than being Nova compatible),
has completely revised file-variable management and has been
expunged of the few existing (and actually rarely encountered)
bugs in the Llancaster original.

The compiler is now considerabdbly closer to the (draft)
standard than is P4: I had initially hoped to remove ali the
essential discrepancies, Gul a couple stil]l remain due to time
and budget limits. A couple of non-standard features -- in the
form of some additional predeclared procedures (nodified from tae
Lancaster original) -- improve the links to the external world
somewhat . Tnese are: a) abnormal program termination with HALT;
b) random access of the components of any Pascal file via
GETRANDO®M and PUTRANDOM. This compiler —- like its Lancaster
parent -— sujports external procedure declarations, and as these
may be written in eirther Pascal or assembly language, the user
has considerable freedom in adding any system functions etc. that
may suit bam.

1 snhould point out that what Lancaster calls P4 has been
consideraply extended from the original Zurich version. In
perticular, 1t embodies full, typed file-variable facilities,
including external files. I have had the gall to label the new

compiler "P5” to avoid some of such guilt by association.
Restrictions that have now disappeared include:

1) Upper—case-only ASCII: lower case may now
be used freely ipn program text; it is not
distinguished from its upgper case equivalent.
The standard brace convention for comments is
allowved. '

2) Tiny string constants (originally 16 chars max):
the limit has been (arbitrarily) extended to 120 chars,
but compiler heap space used corresponds to actual length.

3) GOTOs within procedures only: the full Pascal
standard is now implemented; this wag felt to be
important for the occasionally vital panic¢c sequence .

4) No second field-vwidth specifier for real output:
full standara formatting is now implemented.

Other changes to the compiler ~- such as increased set-size
-- are really only relevant to this implementation, and I will
leave them aside here, but one other internal change may be of
more general interest. It turns out that while tne stack frame
size allocation mechanism used in the original P4 was quite
adequate for an implementation where all stack elements are toe
same size, 1t doesn’t really cope with the situation of differing
sizes. In orief, wnen generating a P-code instruction that does
not have a fixed operand type, the compiler didn’t take the
actual type wnto account when allocating space on the stack;
1ostead, 1t would allogate the larges!t possible size 1if the
ipstruction was a pugn type, and release the sugllest possible
in the case of a por . This meant that the longer tbe procedure,
the larger the stack frame it apparently would need, while in
fact most procedures really need very little in the way of
temporary space. This defect became especially severe when we
went to 8-word sets! The P5 algorithm is exact, keeping proper
track of tne amount of space needed or released vy each
instruction.

Like a pumber of otlner systems around, the approach to
generating an executable Pascal program is for the compiler to
generate a falrly low-level symbolic P-code from the originail
source; this is converted to binary form and bouna with the
run-time library modules to create an executable file; tne whole
sequence of course follows automatically from a single command to
the ogerating system by the user. I don’t intend to get into
discussion here of the relative merits of interpretation versus
compllation to machine code, although the system seems to perform
very creaitabvly against DG Fortran, for instance. The main
advantage of this approach as I see it is its modularity: 1f one
later wants true compiled code out of the system, there is Lo
neea to touch tne compiler at all;i P-code appears to translate
very smoothly into many machine instruction sets (including that
of the kclipse) and in some cases this may be possible using an

LT# SMIN VISV

0867 "HIYVMW

6/ 39V




~l————— A apo ool 0

existing macroassembler. (ln fact, for simplicity and because of
tbe slowness of macro expansion, in our system even the
translation of P-code to its packed form is mostly done by a
translator written in Pascal.) Certainly, 4if the P-code is
complete enouga, 1t snould be reasonably simple to preduce
trapslators and interpreters for different machines, using
exactily the same complrler.

Because first Lancaster, and then ourselves, found some
lacks in the Zurich P4 P-code in the ancillary information that
one would like to have when generating a binary version of the
code, an attempt has been made in the PS> variant to pass on all
tne information that a translator program might oeed, in & form
entirely independent of the target machine. The P-code instruc-
tions and their formats are uachanged from the original, except
for the inclusion of the new facilities, but a new statement type
~=- Lthe directive -- pas been added. Directives are used to
indicate such things as procedure entry labels —- together with
toeir original Pascal fdentifiersi this sort of extra information
is useful in building memory maps or other debugging aids during
translation. External procedure declarations and eatry points
also have their own directives, so that suitable links can be set
up vhen the modules are bound into executable form. Other
directives supply the program name and so on, and the source line
gumbirs now appear with the instruction counts recorded in the

-code,

1 bad intended to encloge a gpecification sheet for the
Implementation Notes of the News , but I think we should be sure
tnat you receive it 1n final released form, so I will let Ganna
Techoology supply that item. If anyone is interested in more
details in the meantime, they are welcome to comtact:

GAMMA TECHNOLOGY, INC.
2452 Enbarcadero Way
Palo Alto, Calif. 94705
(415) 856-7421

Sincerely,

y

T cmette —— o 2 . ST

PATTERN ANALYSIS & RECOGNITION CORP.

—

228 LIBERTY PLAZA
ROME. N.Y. 13440

TEL 313-336-8400

15 February 1979

Mr. Timothy M. Bonham
D605/1630 §. Sixth Street
Minneapolis, MN 55454

Dear Tim:

I have modified the PDP-11 pascal compiler kit (version 4) dis-
tributed by DECUS and by Seved Torsterdahl (see Pascal News #12, June
1978) to improve it in several ways and would like to make it avail-
able to interested RSX-IAS users. I have called my modified kit
version 4.5, to avoid confusion, because version § is now available
from DECUS. All of the modifications were made in order to allow the
compiler to compile itself (until now it had to be cross-compiled

using a DEC-10), but as a side effect my version has the following ad-

vantages:

1)

2)

3)

4)

5)

Can be configured to have one of three different levels of
overlaying (with correspondingly different symbol table
space) in order to allow trading of compilation speed for
capacity to compile large programs.

When configured with lightest overlaying, overlay swapping
time is minimal and compiler runs three times faster than
version u.

Produces object code which is 12% smaller than and is faster
than version 4.

1 corrected bugs to allow procedural parameters to work.
It can compile itself in approximately 15 minutes (without

using memory resident overlays) with all files on the same
RP@6 disk drive.

Persons interested in obtaining a copy should contact Richard
Cichelli or John Iobst, who will be distributing the kit (and making
further fixes and improvements) at the following address:

MC/dms

AN.P,A. Research Institute
1350 Sullivan Trail

P.0. Box 598

Easton, PA 18042

Sincerely, P
Ty A ¥ Comde A

Michael N. Condict

174 SHIN TVISYd

0861 "HOYVM

08 3I9vd



N KF Datum Betecknin

EDP department 1978-10-26
Michael Evans

PROBLEMS IMPLEMENTING PASCAL IN A COMMERCIAL ENVIRONMENT

We are interested in implementing Pascal as a normal program-
ming language in parallel with COBOL and Assembler. The current
program development environment is -

IBM 370/168 under MVS

Interactive development using TSO

Logical modular programming

Interactive testing of modules

Structured programming using macro COBOL (MetaCOBOL)
Data base management using System 2000

Applications development staff of about 70 persons

In order to be able to use Pascal in a production environment,
we need to know about the future of Pascal in the following
areas -

Standardisation/Formalisation

Integration with existing systems

Special commercial requirements

Development environment
Programs produced in our enviromment have long useful life Standardisation
times, up to 10 years. Before committing to a new language,
we must be sure that it is going to survive that long.

Usually this kind of guarantee is provided by a machine
supplier who undertakes support of a number of main line
languages. Pascal is not one of our supplier's main line
languages.

Another guarantee is given by a formal standardisation through
ISO/ANSL, Pascal is in practice formalised via Wirth & Jensens
book. More recently, the Pascal group at UCSD have taken on
collection of Pascal extensions and modifications. Are all
Pascal implementors going to accept and implement all exten-
sione or is there going to be a foundation Pascal with many
different extensions?

Various Pascal-like languages have been developed and are
being developed. How much invested development must be scrapped
if it turns out that one of these languages, for example
ironman/DOD1, turns out to be a standard? How easy will it

be to automatically convert to the new language. We have

SVKF .
Datum Beteckning

EDP department 1978-10-26
Michael Evans

converted between various COBOL dialects without leaving the
COBOL language. It ought to be possible to comvert to a new
Pascal dialect if this does not involve a complete rethink
regarding education, programming techniques, development
tools etc.

One of the advantages of Pascal is the use of machine inde-
pendent p-code. Is this standardized sufficiently that code
from one compiler may be used with another machine which
supports the same level of p-code? This is of interest for
us as we envisage the use of satellite machines of various
sizes with centrally developed programs. This development
would be eased if tested object code could be sent to remote
sites.

Pascal is taught at many universities. Unfortunately, many

of our programmers, and many of those whom we employ in the
future, have not had the benefit of this education. Are
educational materials, in the form of video cassettes,

course books, examples of good programming practices available
for Pascal? It would be of great interest if we could get in
touch with other installations, especially in Europe, who

use Pascal in a commercial environment.

Although Pascal can be used to implement operating systems Integration
and data base management systems, these functions are nor-
mally already present in the commercial environment. Data
already exists in some form of data base which must be
accessed in a particular way, common functions such as date
calculation are already implemented in standard program
modules etc. For Pascal to be fully useable, it must be able
to communicate with modules written in other languages. This
comnunication must include being invoked by other modules
(IMS calls to data base programs) and invoking other modules
(IMS data base services). In addition, it is often suitable
to divide an application into a number of separately compil-
able modules. Pascal must therefore be able to communicate
with Pascal modules compiled on other occasions.

The same data structures ars often used in a number of pro-
gramé¢. To be improve safety and simplify development it
would be useful to use the same physical definition. Some
kind of source library management feature with a compiler
directing COPY function is needed in Pascal.

Programming can be simplified if common functions are already
coded and tested. The number of such common functions can
become enormous if all combinations of parameter types are

LT# SHIN TYISYd

086T “HINVMW

18 39vd



KF 108

SVKF

EDP department
Michael Evans

Datum

1978-10-26

to be catered for. This problem may be avoided if a standard
type "THING" were available. A parameter defined as THING
may contain any type of data. It may only be used as a para-
meter to the standard function DATATYPE (variable) which
returns BOOLEAN INTEGER REAL CHAR USER etc, or in an assign-
ment statement. Execution time type checking would be needed
in that statement but nowhere else. This admittedly breaks
the rules of Pascal as a strongly typed language in the same
way as GO TO breaks the rules of control structures. The type
violation would however be well marked both in the invoked
function and probably in the invoking function (in order to
pass type information). It would allow such functions as ge-
neral interfaces to external systems to be implemented in
Pascal.

Pascal as defined by Jensen and Wirth only defines sequential
files. It is often necessary to be able to access a particu-
lar record in a file, either by means of a key (indexed

files) or by means of record number (relative or direct files).
The use of Pascal would be eased if it were possible to pro-
gram this in Pascal and not need Assembler routines to do it.

Other programming languages use different formats for internal
data. These formats are often used on existing data files, It
must be possible to access even these kinds of data. One
method is to implement general Pascal functions to perform the
conversion to and from standard Pascal types. To ease the
coding of this function, the data type THING mentioned above
would be useful. The other method would be to support data
types which are already supported in FORTRAN/COBOL/PL1 even

in Pascal possibly with some limitations.

Arithmetic operations often involve a fixed number of "decimal
places. It must be possible to define these fields as integer
with decimal shift instead of risking inaccuracy caused by
floating point errors.

The formatting requirements for figures in a financial listing
are many and varied. Zero suppression, credit/debit signalling,
thousand comma insertion and floating currency sign are just

a few of the features need. Pascal must be able to define the
editing required when outputting numeric variables to text
files in a way similar to COBOL's report item PICTURE clause.
If this is not done centrally, each implementor will find his
own way of editing, resulting in confusion similar to that
surrounding BASIC's PRINT USING statement.

Beteckning

Commercial programming

KF 108

<>

SVKF

EDP department
Michael Evans

Bewckning

D498 10-26

Development

The programmers involved in developing commercial programs
environment

are among the most expensive items used during development.
To enable them to work as efficiently as possible, they must
have better tools than a straight batch compiler. Combined
with a suitable compiler, Pascal p-code ‘gives the ability to
have an advanced interpreter which allows single statement
execution, breakpoints, setting och listing global and local
variables, statement trace and path execution summaries. When
used in an interactive enviromment, these features would
greatly ease program development., Many of these ideas are
found in the current Pascal compiler series in Byte magazine.

As Pascal makes it easier to write large compilable units
than many separately compilable modules, it is essential
that the programmer be able to find variable definitions and
uses. A cross reference listing would be very useful.

Occasionally, commercial data processing requires handling

of such large data volumes that speed of operation is a
critical issue. To allow Pascal to be used in these situatiouns,
it must be possible to translate p-code to executable machine
instructions on the target machine. It may even be possible

to optimize this machine code. The interrelationship between
these functions is illustrated below.

*'NORMAL"
INTERPRETER

—

PASCAL

SOURCE P-CODE

COMPILER

POST MORTEM

DEBUGGING
INTERPRETER STMTS

DEBUGGING

EXECUTABLE
OBJECT
CODE

TRANSLATOR/
OPTIMIZER

v

This paper contains the ramblings of a newcomer to the Post-script
Pascal user community. I have tried to see Pascal through

the eyes of the business data processing department where I

am responsible for programming methodology. I imagine that

many of the questions have been answered earlier or rejected

as contrary to the spirit of Pascal, in which case I apologize.

MR A A A A A A A g 4 ¢

POST MORTEM

LT# SM3N 1VISVd

0867 “HOYVH

39vd

o
L]




PASCAL NEWS #17 ‘ MARCH, 1980 PAGE 83

Pascal Standards Progress Report

Jim Miner, 1 December 1979

Several newsworthy events have occurred since the last Progress Report in Pascal News #15
(pages 90-95). In a nutshell, these events show substantial progress toward an
international Pascal standard. (See the Progress Report in #15 for a glossary of some the
terms used here.)

Anothef Working Draft

As expected in the last Progress Report, a fourth working draft prepared by BSI DPS/13/4
was distributed within standards organizations in October by the secretariat of
ISO/TC 97/SC 5 under the document number "N510". (Recall that the previous draft is
called '"N462".) N510 contains a large number of changes from N462. Most of these changes
are corrections to "obvious" errors and oversights. A smaller number of changes address
fundamental ambiguities or other technical flaws in the Pascal User Manual and Report;
these changes often are more controversial than the "obvious" ones.

As an example of the more controversial kind of change, consider the restrictions placed
on labels to which goto-statements may refer. The User Manual and Report specifies that a
goto may not jump into a structured statement. Although the wording in N462 was felt to
be wunclear, this was the intent of the restriction in that document. But the comments
received from the public on this section of the draft clearly showed that run-time tests
were required to enforce the restriction in the case of goto’s which jump out of
procedures or functions. In order to allow efficient compile-time checking of goto
restrictions, the restrictions were tightened in N510, as described later. At the same
time, of course, the wording was clarified in response to many comments.

A full 1ist of all changes between N510 and N462 would be very difficult to compile and
explain. Rather, we hope to print in a future issue of Pascal News the next draft which
will be based on N510.

However, there 1is one very important new language feature which was introduced in N510.
This feature is called "conformant array parameters". The feature was added to N510 in
response to the many comments, including those from Niklaus Wirth and Tony Hoare, which
cited as a major shortcoming in Pascal the inability to substitute arrays of different
sizes for a given formal parameter in procedure and function calls. Because this such a
significant and recent change, Arthur Sale has written the description which appears
below.

The Experts Group Meeting

The new draft, N510, served as a basis for discussion at the meeting on November 12 and 13
in Turin Italy of the ad hoc Experts Group. This meeting was held in conjuction with the
ISO/TC 97/SC 5 meeting on November l4..16. The following individuals were in attendance.

Franco Sirovich (Italy) David Jones (USA)

Bill Price (USA) Coen Bron (Netherlands)
Michel Gien (France) Jim Miner (USA)
Christian Craff (France) Scott Jameson (USA)
Olivier Lecarme (France) Makoto Yoshioka (Japan)
William A. Whitaker (USA) Akio Aoyama (Japan)

Don MacLaren (USA) Albrecht Biedl (Germany)
Fidelis Umeh (USA) Arthur Sale (Australia)
Bengt Cedheim (Sweden) Emile Hazan (France)
Marius Troost (USA) Tony Addyman (UK)

The purpose of the meeting was twofold: first, to advise the "sponsoring body" (BSI,
represented by Tony Addyman) on solutions for remaining technical issues, and, second, to
advise SC5 on a course of action for further work on the standard. Most of the two days
was spent on technical issues.

1

—

-




Technical issues were informally divided into three categories: (1) '"niggles" (or
"obvious" problems having fairly simple solutioms), (2) "local” issues which affected few
sections of the draft, and (3) 1ssues of greater magnitude, affecting several sections of
the draft. Naturally, discussion centered on the last two categories.

An example of a "local" issue (category 2) was mentioned above, namely the restrictions on
labels and goto’s. The relevant section reads as follows.

6.8 Statements

6.8.1 General. Statements shall denote algorithmic actions, and shall
be executable. They may be prefixed by a label. Within its scope, a
label shall only be used in the statement S that it prefixes, the
conditional-statement (if any) of which S is an immediate constituent,
the statement-sequence (if any) of which S8 1B an immediate
constituent, and, if this statement-sequence is the statement-part of
a block, the procedure-declarations and function-declarations of that
block.

statement = { label ":" ] ( simple-statement |
structured-statement ) .

The group quickly agreed both that the word "used" (in "a label shall only be used")
should be changed to indicate the fact that the only possible use of a label 1is a
reference by a goto-statement, and also that the long sentence which etates the
restrictions on references to labels should be brokem down into more-easily wunderstood
parte. It was agreed that the intent of the sentence allows goto-statements to reference
the label of a statement S only in the following contexts:

(a) when the goto-statement occurs anywhere within S; or

(b) when the goto-statement occurs anywhere within the if-statement or case-statement of
which 8 418 ome "branch" or component statement (e.g., the goto may occur anywhere in the
elee part of an if-statement and still reference the label on the then statement, but not
a label within 1t); or

(c) when the goto-statement occurs anywhere within a statement-gequence (in a
compound-statement or a repeat-statement) of which S 18 a component statement; or

(d) when the goto-statement occurs in a procedure or function declaration (within the
scope of the label) nested in the block which declares the label (i.e., non-local goto’s),
and only if the statement prefixed by the label is not nested inside a structured
statement (other than the compound-statement which is the statement part of the block).

More than one member of the group certified that these restrictions can be enforced
efficiently by a one-pass compiler with no run-time overhead.

There was resistance to allowing jumps between 'branches' of conditional-statements. It
was argued that the use of such goto’s is not good, 1s poor "style", and should not be
part of the standard. After some discussion, the group agreed to further restrict the
goto by not allowing the references cited in (b), above. As with most such changes, the
precise redrafting was left to an individual member of the group.

The major topic of discussion was conformant array parameters. This was confused by the
fact that the form present in N510 had already been renounced by the British in favor of a
form drafted by Arthur Sale. With the exception of a different proposal by Coen Brom,
which was closer to the version in N510, there was nearly unanimous support for the
version proposed by Arthur Sale. (See his note, below, for a description.)

In addition to technical issues, the Experts Group also briefly reviewed Pascal standards
activities within the nations represented. It was clear that the approach taken by BSI
DPS/13/4 toward a Pascal standard had a great deal of support internmationally, with the
exception of a few technical details. Discussions are currently underway in attempting to
resolve those issues not completed in Turin.

Also evident was significant interest in extensions to Pascal within several countries,
especlally Prance, Germany, the Netherlands, and the United States. Therefore, any future
extended standard must be developed in cooperation between the interested national groups
as a longer-range project. This project undoubtedly will involve the newly-formed Working
Group discussed below.

The SC5 Plenary Session

The Experts Group sent two resolutioms to SC5 for appfoval. The first resolution, which
passed SC5 without opposition, states that Tony Addyman should revise the Pascal draft
(N510) according to the agreements reached by the Experts Group, and that this revised
draft would be registered as a Draft Proposal for voting. What this means is that some
time in the next few months the revised draft will be distributed to SC5 voting mewmbers
for a three-month letter ballot. We hope to print the full text of the Draft Proposal in
Pascal News when 1t becomes available so that readers will have a chance to provide
comments on it to their own national standards group.

The second resolution, passed unanimously by SC5, eastablished a formal Working Group
("Working Group 4, Pascal”) to advise the British group on further standardization, and to
consider proposals for such from bodtes recognized by IS0. The Working Group is intended
to replace the Experts Group, and will be under the Convenorship of Tony Addyman. Members
are to be nominated by SC5 wmember bodiea. This group will aid in resolving negative
comments (1f any) on the new Draft Proposal, and will probably coordinate future work on
Pascal extensions.

The SC5 meeting also saw an interesting exchange on the subject of Ada (the U.S.
Department of Defense language). William A. Whitaker, attending as an observer from the
United States, made a presentation to SC5 on Ada. Under questioning by the Australian
representative (Arthur Sale), Whitaker admitted that Ada actually has 1little {in common
with Pascal. This stands in stark contrast to the impression one might get from reading
DoD press releases and other articles which some feel have attempted to lend credence to
the Ada project by assoclating it with Pascal. Thankfully, Pascal need no longer suffer
from such derogatory associations!

-

In the United States
Several small points should be noted as having changed since the Progress Report in #15.
These changes occurred at the meeting of November 28..30 in 'Boston.

First, a single joint committee has been formed from the ANSI-X3J9 and the 1EEE Pascal
Standards Committees. The new committee is formally called the "Joint ANSI/X3J9 - IEEE
Pascal Standards Committee', abbreviated "“JPC".

Second, Jess Irwin has resigned as secretary of X3J9. Carol Sledge of On-Line Systems has
volunteered to take the job. Correspondence with the JPC should be sent to:

Carol Sledge (X3J9)

+  cfo X3 Secretariat
CBEMA: Suite 1200
1828 L Street NW
Washington, D.C. 20036

Third, the proposed "SD-3" for coneldering extensions to Pascal printed in #15 (pages
93..95) was modified to reflect the international interest in Pascal extensions which was
apparent at the Turin meeting. The revised document specifies that the JPC will cooperate
with Working Group 4 of 8C5 on developing an international extended standard, and that the
resulting American National Standard will be compatible.

r R E X X XX XX KX X R B B & &

(T# SKIK YISV

0867 “HIUYMW

#8394



Implementation Notes
Editorial

Tekironix, inc.
P.O.Box 500
Beaverton, Oregon 97077

Phone: (503) 644-0161
TWX: 910-467-8708

Tektronix

Wl L33 L) AL INCE

First, the formalities:

Bob Dietrich

MS 63-211

Tektronix, Inc. phone: (503) 682-3411 ext 3018
P.0. Box 500

Beaverton, Oregon 97077

U.S.4.

Feel free to call me (I'm usually in between 10AM and 5PM Pacific time),
but consider yourself lucky if you find me near the phone. 1 don't have
a secretary, and may have to be paged. Consider yourself foolhardy if
you write me and expect a personal reply in less than a year. 1'l1 try
to do better for those outside the U.S. Should you wish information on
a specific implementation, please read Pascal News first. 1t's unlikely
that 1 will have any more current information than can be found there.
Furthermore, this can put me 1in the delicate position of seeming to
endorse a particular implementation, which 1 will not do for ethical and
legal reasons. These cautions aside, I'11 do what I can to help.

Next,the traditional goals statement of a new editor. At this time, I
don't plan to change anything (I know - every new editor and politician
says the same thing). My basic goal is to publish a comprehensive 1list
of Pascal implementations by the summer of 1980. Whether this will
appear in one issue or several is yet to be discovered: a great deal
depends on the cooperation of the readers of Pascal News. Which brings
me to the next topic.

As you may have noticed, the Implementation Notes section was pretty
sparse 1in issue # 15, and almost non-existent in this issue (except for
a long winded editorial). The reason is we have received very few new
reports and/or updates of implementations in recent months. No garbage
in, no garbage out. To remedy this problem, 1 will be mounting “a mail
campaign as has been done in previous years. Anyone and everyone who
has ever even hinted they had an implementation of Pascal will be
getting a letter requesting a new implementation checklist. However, I
do realize how difficult it is at times to answer mail. To save us both
some trouble, you will notice a brand new Pascal News One Purpose Coupon
at the back of this issue (not to be confused with the ALL Purpose

Coupon) . This amazing piece of paper is simply an implementation
checklist with room to write on. Fill in the blanks, fold, and mail to
the address on the back. Feel free to also send in camera ready
checklists. I hope this will give us a little more to print in the
meantime.

Now for my biggest irritation. In my everyday work, I have used many
different implementations/versions of Pascal. On our DECsystem-10 zlone
we have six different versions of Pascal available. This does not
include some cross-compilers for other machines. Why do we have so many
different compilers for the same machine?

The reason we have so many versions still. active 1is that many user
programs have not been updated to account for major changes in new
releases of the compilers, and so the old release stays around. Most of
the changes have been non-trivial, and heavily impact whether the
programs can be simply recompiled under the new release. The changes
have 1included the way the character set, terminal 1/0, 1/0 in general,
operating system interface, et cetera, are mishandled. Even worse are
the versions that made "improvements" to the language, such as:

J iz case k434 of ...
And
1 := if FouledUp then sqr(x) else sqrt(z)
Of course, the changes are rarely upward or cross compatible.

lhe root of the problem, and the part that irritates me, 1is the fact
that the compilers implement different extended subsets of Pascal. 1lhis
means they implement entirely different languages, not Fascal. None of
these compilers implement all of "standard" Pascal (as in the Jensen and
Wirth Report); however, all the versions have been "extended" in quite a
few arbitrary ways. Little attention seems to have been gjven to
eradicating errors, even those due to the P2 heritage of the compilers.
In fact, one of the versions came out with gquite a few extensions (many
of them bastardizations) and none of the errors of 1its predecessor
corrected. (In all fairness, two of the versions have had major error
corrections performed on them). These shortcomings and extensions make
it very difficult for programs to be transported both to and from our
installation, especially for those not totally aware of the problem.

Please do not misunderstand me. I am not against extending Pascal
(well, at 1least not totally against 1it). Some extensions make the
bootstrap process for a new implementation much easier. What 1 am
against 1is the effort put 1into extensions that would be much better

LT# SMIN TYISYd

086T "HI¥YW

S8  I9Vd



directed toward fixing errors and implementing the full language. How 1
long for a full set of {ASCII} char! As a compiler writer, 1 realize
that extending the language in a particular implementation both is fun
and might help differentiate the product in the marketplace. This 1is
especially true in the Pascal market, where both users and implementors
have not really understood the language.

What 1 am really looking for (I don't think I'm alone) is quality in the
tools 1 use. Just as I wouldn't be too happy buying a saw missing half
its teeth, or with half the teeth backwards, or with teeth on the handle
where my hand is supposed to go, 1 really dislike the so-celled
implementations of Pascal whose manuals list ten major omissions to the
language &nd thirty “improvements", The omissions are even less
tolerable once an implementation has gotten past the "well, at least it
looks like Pascal" stage. This is not quality.

Perhaps you feel 1 expect too much for a language that owes its
popularity to the efforts of wmany individuals rather than large
companies. True, we owe these implementors a debt that will never be
repaid. But this debt does not relieve implementors of their
responsibility to do the job right, especially if they have the time and
energy to make their own "improvements" to the language. Another reason
I expect quality is for the many new users of Pascal. These users judge
the language 1itself by the particular implementation they are first
exposed to, and 1 have already seen some discouraged by poor
implementations. The most important reason to hold implementors
responsible for quality is the simple fact that {f we do not, there
won't be any, and we the users will find 1t much more difficult to get
our own jobs done,

A good many implementors are professional enough to assume this
responsibility for quality, and have probsbly alresdy done so. What of
those individusls and companies who have not? What can we wusers do?
Well, the Dbest approach is to convince the implementor that conforming
to standard Pascal Is in the timplementor’'s own best interests. lhe
reasons can be many: good will, conditions of purchase, additionsel
sales, blackmell, advertising, even legal requirements. In many
countries, adoption of a standard (such as 150 Pascal) gives it the
weight of law. Any product purporting to be Pascal in such a country
MUST conform to the standard.

It is fortunate that there are now two tools to back up this demand for
quality. The first, of course, is the upcoming 1SO Pascal standard.
There are admittedly problems because the standard is not yet official,
but * at the same time the standard is for the most part not all that
different from the Jensen and Wirth Report. Getting most
implementations to conform to the Report would be a major accomplishment

in itself, and not that far from where the ISO standard will probably
end up.

The second tool to help quality is the Pascal Validation Suite that was
published in issue # 16. The biggest problem in quality assurance is
finding quality tests, and the validation suite goes a long way toward
solving this problem. It is 8lso a very big advantage to have the suite
aveilable now, even before the Pascal standard is adopted. Implementors
of other language standards had to wait quite a while (many are still
waiting) before such a measurement device was available. I will have
quite a bit more confidence in a particular implementation of Pascal if
1 know the results of having it try to process the validation suite.

I would like to encourage both users and implementors to wuse the
validation suite and send the results to me as well as to Arthur Sale.
By all means, also send a copy to the implementor. 1 will then publish
the reports I receive in Pascal News for the world to see. Please see
the sample reports in issue # 16 for format. 1 would hope that over the
next year we can get reports for each and every implementation (then
again, 1 always have been an optimist). The letter campaign to
implementors will also be requesting reports of the validation suite
results.

Cne last comment. Be kind to your implementor, especially 1if he 1is
doing & good jcb. It's not all that easy to wrestle many of our poorly
designed machines into speaking Pascal. Lon't use the validation suite
to beat him senseless, but have some patience. On the other hand, if he
has implemented something that cannot even pass for a subset of Pascsal,
cannot add two numbers correctly, sand has a lot of "imgrovements", be
merciless.

Implementation Critiques

igi ipment PDP-11 (*Swedish’

1979 December 19
A critique of the Swedish Pascal compiler

(as derived from its User Manual by A.H.J.Sale)

1. The User Manual is a supplement to Jensen & Wirth. It is well-written,
and describes the implementation of Seved Torstendahl running on POP-Ils
under RSX-11M and IAS. -

0861 “H)¥VW LUF SMIN VISV

gg 39V



2, The manual first describes how to run Pascal programs under the operating

3.

systems, how to attach files, etc.

The next section addresses extensions. The tokens are exteanded by:
(. for I ]resﬂonable, given poor print capability
) 1
(* {
*) 1

}not extension, allowed by standard.

E'3 for <> These three extensions are simply undesirable;
& for and especially since neither # nor ! capture
! for or any of the meaning of the well-defined tokens.

1 recommend the removal of the last three extensions as being contrary
to the best interests of portability of programs and programming skills,

and ugly as well.

The document introduces extra pre-defined constants: MAXINT, MININT,
ALFALENG, MAXREAL, MINREAL, and SMALLREAL. It mis-calls these
'standard’ constants which they are not, except for MAXINT. No problems
with the introduction of extra constants provided they are properly

identified.

'Standard’' types is also misused. TEXT is indeed standard and need not
be in a section on extensions, but types
ASCII = CHR(V)..CHR(127); BYTE = CHR(0)..CHR(255);

are simply extra pre-defined types. This misuse of ‘standard' runs throughout

the document. Something can only be called 'standard’ if it conforms to
a8 standard, either the old de¢ faoto standard of Jensen & Wirth, or

preferably the new IS0 draft standard. We m s well this righ

COMPLUTER
STulieS
BROUP

and use of these IS0 positions for Swedish chars.

The University of Southampton

10

11.

The extended case statement (otherwise clause) does not use the syntax
more or less agreed internationally and published in Pascal News, but

uses an OTHERS label. The syntax suggests it need not be last.

A LOOP-END construct is introduced, together with an EXIT. I strongly
recompend the removal of this congtruct which is a frequent cause of error
in many programs. Why it was introduced is difficult to understand since
Pascal handles the so-callad loop-and-a-half structure much better without
it.

There are 'Standard' procedures UALTE and TIME; it seems a pity tnat these
cannot be guaranteed to relate to the same instant, and that a single
TIMESTAMP cannot return both values guaranteed synchronous. NEW is
implemented, but not DISFOSL; MARK and RELEASE are provided.

There is a HALT, and RESET and REWRIT: allow file selection by additional
parameters. BREAK flushes line buffers for the special file TTY, and
acts as WRITELN for other text-files (irregular). PAGE insexts a form-

feed character into the text-file.

Random access is provided by allowing another integer parameter to GET and
PUT. 1 cannot understand why people prefer to overload names with new

meaning and introduce irregularity in preference to choosing new names
such as PUTR and GETR. Especially since the axioms of GET/PUT do not hold.

There are additional 'standard' functions RUNTIME, TWOPOW, SPLITREAL
and IORESULT.

There is an adjustable array parameter fsature, iow it works is a mystery
as the component-type is apparently not given. The following example
is taken from the manual:
PRUCEDURE MATADD(VAR A,B,C: ARRAY [INTEGER.INTEGER]);
It would seem highly desirable to alter this implementation to something

with more abstract structure, and more checkable.

There is also a facility to declare a new kind of parameter

PROCEDURE PRINT (STRING S);
This feature turns Pascal's ordering on its head (type precedes identifier)
and it misuses the word 'string' by defining it to be an array! The
facility is badly expressed, and should be described in terms of a sequence

(= file) of characters.

LT# SMIN TVYISYd

0861 “HI¥VH

{8 39vd




LT# SMIN TVISVd

08617 “HIYYMW

12. Thexe is a facility to pass procedural and functional parameters, but
ic differs from the draft IS0 standard in defining a new form of
parameter-list. Congruity of two parameter lists is not adequately
defined, but this is an informal document.
. i X ( See Zilog 2-80 (Digital Marketing) )
13. There is an external compilation facility; the directive EXTERN is used B
followed by a parameter list. Examples { See Zilog Z-80 (MetaTech) )
E£XTERN (FORTRAN) ( See GOLEM B (Weizmann) )
EXTERN (FORTRAN, 'TEST'
. ¢ ’ ) This compiler runs under CP/M and produces macro-assembler code. The
price is $275.
14. The reserved word list is extended by LOU¥Y, EXIT, OTHERS, EXTERN. Ithaca Intersystems (formerly Ithaca Audio)
If the loop construct is removed this drops to two. 1650 Hanghaw Road
P.0. Box 91
Ithaca, NY 14850
15. PACK and UNPACK are not implemented; only char and Boolean arrays
are packed. (Presumably no records are packed, which is very ':T'n;gwﬂer runs under CP/M and is a Pascal-P descendant.  The price
unsatisfactory for many mini and micro applications.)
Digital Marketing
2670 Cherry Lane
16, Only local GUTOs are permitted; a set may have up to 64 elements; Walnut Creek, CR 994596
files may only be declared in tue main program. This is a compiler for a cassette-based system, and sells for $35.
17. The documentation cheats on MAXINT by disallowing it as a limit in a POBU ;‘;" Systems
for—loop, It would be accurate to say that MAXINT in this implementation Windsor Junction, North Saskatchewan BON 2V0
is really 32766, and that the constant called MAXINT siiould be renamed, Conada
perhaps to BIGINT or similar. Or the implementation should be improved The information on this compiler is unclear. It appears to be all or
(see Pascal News 15). partly in ROM, and sells for £ 40.
, The Golden River Co., Ltd.
: - : Telford Road.
18. Set of char is allowed, by defining tne type char to be the subrange Bicester, Oxfordshire OX6 GUL
of characters from CHR(32)..CHR(95). Of course this violates a lot of England
Pascal axioms, notably about the type of the result of CHR. A very crude
approach to the problem. It should be done right.
A.H.J.Sale
s

2 39vd



PASCAL NEWS #17 | MARCH, 1980 PAGE 89

Validation Suite Reports

The University of Tasmania

Postal Address: Box 252C, G.P.O., Hobart, Tasmania, Australia 7001
Telephone: 23 0561. Cables ‘Tasuni’ Telex: 58150 UNTAS

IN REPLY PLEASE QUOTE:
FILE NO.

IF TELEPHONING OR CALLING

ASK FOR 4th December, 1979

Mr. R. Shaw,

Digital Equipment Corp.,
5775 Peachtree-Dunwoody Road,
Atlanta, Georgia 30342
U.S.A.

T

Dear Rick,

Enclosed is a copy of a report of the Pascal Validation Suite on a
VAX-II Pascal system. The report was produced for us by Les Cooper at
La Trobe University.

The Pascal system is a Field Test version and is mnot available generally
at this stage. All errors have beea reported back to DEC who presumably wilf
fix them before the system is finally released. The report should be seen
in this context. Nevertheless, it provides an insight into what the VAX
compiler will be like when it is officially released early in I980.

Les Cooper says he will provide an up-to-date copy of the report after
the compiler has been officially released.

Yours sincerely,

ré"’j ~
Roy A. Freak,
Information Science Department

R

wigital_Equipment VAX 11/780 (DEC)

VaX-11 Pascal - Tested At LaTrobe University
Pascal Validation Suite Report




Pascal Processour Identification

Computer: Digital LEquipment Corporation VAX-11/780
I’rocessor: VAX-11 Pascal Field Test vcrsion T0.1-68

Test Conditions

Tester: Les Cooper
Computer Centre
La Trobe University

Australia
Date: aHovember 1979
Version: Validation Suite 2,2

Conformance Tests

Rumber of Pests Passed: 128
Wumber of Tusts railed: 9

betails of Failed Tests

Test 6.4.3.3-1 failed because an empty record contain-
ing a semi-colon produces a syntax error.

Test 6.3.3.3-4 failed because an attempt to redefine a
tag ficld elsevhere in the declaration part produces
syntax exrrors.

Test 6.4.3.5-1 failed because an attenpt define a file
of pointertype failed to compile.

Test 6.5.1-1 failed because an attempt to define a file
of filetype failed to compile,

Tests 6.6.3.1~5, 6.6.3.4-2 failed to compile vhere they
tried to pass a procedure with a formal parameter list
as as formal parameter to another procedure,

Test 6.9.4-15 shows that a write which does not specify
the file does not write on the default file after
reset{output) .

Duviance Tests

Nurber of bLeviations Correctly betected: 61
Hurber of tests showing true exteunsions: 4
Nurber of tests not detecting erroneous deviations: 18

Nusber of tests failed: 6
Details of Lxtensions

Test 6.1.5-6 shows that lower case e may be used in
nunbers.

Tests 6.8.3.9-9, 6.8.3.9-13, 6.8.3.9-14 show that the
following may be used as the controlled variable in a
for statement: intermediate non-local variable, formal
paramcter, global variable,

Details .of beviations not DLetected

Test 6.1.2-1 shows that nil may be redefined.
Tests 6.2.2-4, 6.3-6, 6.4.1-3 show that a common scope
error was not detected Ly the compiler.

Tests 6.4.5-2, 6.4,5-3, 6.4.5-4, 6.4.5-5 indicate that
type compatibility is used with var parameter elements
rather than enforcing identical types,

Test 6.6.2-5 shous the compiler permits a function de-
claration with no assignment to the function identif-
ier.

Tests 6.8,2.4~2, 6.8.2.4-3, 6.8.2.4-4 show that a goto
between branches of a statenent is permitted.

Tests 6.8.3.9-2, 6.8.3.9-3, 6.8.3.9-4, 6.8.3,9-16 show
that assignrment to a for statement control variable is
not detected.

Test 6.9.4-9 shous that zero and negative filed widths
are allowved in write,

Details of 'ailed Tests

Test 6.6.3.6-2, 6.6.3.6-3, 6.6.3.6~4, 6.6.3.6-5 check
the compatibility of parameter 1lists. They fail to
compile where they use a procedure with a formal param-
eter list as a parameter to another procedure. Test
6.8.3.9-19 shows that insecurities have been introduced
into for statements by allowing non-local control vari-
ables.

Erroxr Handling

Wurmber of Crrors correctly detected: 14
Nuinber of errors not detected: 33

bDetails of errors not detected

Tests 6.4.3.9-5, 6.8.3,9~6, 6.2.1-7 indicates that un-
defined values are not detected.

Tests 6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7, 6.4.3.3-8 indi~
cete that no checking is performed on the tag filed of
variant records.

An assigniment to an empty record is not detected in
test 6.4.3.3-12,

Tests 6.4.6-4, 6.4.6-5, 6.4.6-6, 6.4.6~7, 6.4.6-8,
6.5.3.2-1, 6.8.3.5-5, 6.8.3.5-6, 6.6.G.4-4, 6.6.6.4-5,
6.6.6.4-7 indicate that no bounds checking is performed
on array subscripts, subranges, set operagions, or case
selectors. Note: The system default is run time
checks off, If the tests had been compiled with checks
on then the checking would have been done,

Tests 6.5.4-1 and 6.5.4-2 show that a poor error mes-
sage is given when a nil pointer is dereferenced and
when an undefined pointer is dereferencead.

 Test 6.6.2-6 shows that, if there is no result assigned

to a function, there is no run time error message.

Test 6.6.5.6-6, 6.6.5.6~7 show that it is possible to
change the current file position while the buffer vari-
able is an actual parameter to a procedure and whilst
the buffer variable is an element of the record vari-'
able list of a with statement.

Test 6.6.5.3-3, 6.6.5.3-4, 6.6.5.3-5, 6.6.5.3-6 show
that there is no errormessage when the following occur
as the pointer parameter of dispose: nil, wundefined
pointer, variable which is currently an actual parame-
ter, variable which is an element of the record vari-
able list of a with statement.

Test 6.6.5.3-7, 6.6.5.3-8, 6.6.5.3-9 fail because no
checks are inserted to check pointers after they have

LT# SMIN TYISVd

NgeT “HINVW

ne  I9Yd




been assigned a value using the variant form of new.
Pest 6.8.3.9-17 show that two nested for statements may
ahve the same controlled variable.

Tinplenentation Defined

Nurber of tests correctly run: 9
Number of tests incorrectly handled: 0

petails of implementation dependence

Test 6.4.2,2-7 shows maxint to be 21474883647
Test 6.4.3.4-2 shows that a set of char is permitted.
Test 6.4.3.4-4 shows that there are 255 elements in a
set.
Tests 6.7.2.3-2 and 6.7.2.3-3 show that Boolean expres-
sions are fully evaluated.
Tests 6.6.2.2-1 ana 6.1.2.2-2 shou that the variable is
o eerSRMEEEED. before.  the expression is evaluated in an as-
sigurent statement.
Test 6.,10-2 shows that a revwrite is allowed on file
output,
Test 6.11-1 shows that alternate corment delimiters are
inplencnted. )
Tests 6.11-2, 6.11-3 show that equivalent syrbol cannot
be used for the standard rceferxence representation for
the up arrow, :, ;, :=, [, ), and the arithmetic opera-
tors.
Tost 6.9.4-5 shows that two digits are written 1in an
exponent.
Test 6.9.4~11 shows the default field width to be in-
teyexr 10, Boolean 16, real 16.

Quality leasurement

Rumbexr of tests run: 23
Number of tests incorrectly handled: 0

‘Results of tests

Test 5.2.2-1 shows that identifiers are not distingu-
ished over their whole length,

Test 6,1.3-3 shows that there are 15 significant char-
acters in an identifier,

Test 6.1.8-4 shows that no warning is given if a { or ;
is detected in a conment.

Tests 6,2.1-8, 6.2.1-9, and 6.5.1-2 indicate that large
lists of declarations may be used in each block.

Test 6.4.3.2-4 indicates that integer indextype is not
permitted.

Test 6.4.3,3-9 show that variant fields of a record oc-
cupy the same space, using the declared order.

Test 6.4.3.4-5 (Warshall's algorithm) took 1.010 CPU
seconds and 249 bytes on the VAX-11/780. Note: This
was using the VAX default of no run time checking.

Test 6.8.3.5-2 shows that no warning is given for im-
possible cases in a case statement,

Test 6.8.3.5-8 shows that a large populated case is ac-~
cepted,

Test 6.8.3.9-18 shows that the undefined value of a for
staternent controlled variable is left in the range of
its type.

Tests 6,8,3.9-20, 6.8.3.10-7 show that at least 15 lev~
els of nesting are allowed when dealing with for stat-
ments, with statements, and procedures.

Test 6.9.4-10 shows that the output buffer is flushed
at end of job.

Extensions
Number of tests run: 1
Test 6.8.3.5-14 shows that otherwise is- implemented

though -not with the same syntax as that adopted at the
UCSD Pascal workshop in July 1978.

VAX-11/780 Pascal - Commentary on Results

The Validation suite has shown up quite a number of flaws in
the compiler, as documented in the preceeding report. Of
particular concern is the apparent philosophy that the run
time checking should be off by default.

These”FEEYS were rif™a¥lng Field Test version TO.1-68 of the
compiler., With luck (a lot), the problems found will all be
fixed before the compiler is releas:d.

DEC has been informed of the results of all the tests. They
have been given run listings, etc. where necessary. The
replies they send to me (when they arrive) will be included
in this section of the report.

T4 SMIN YISYd

0861 ‘HIUYW

16 39vd

e



PASCAL VALIDATION SUI"E REPORT

Pascal Processon Tdentification

Computen: Apple 11

Processon: UCSD Pascal version 11.1

Test Conditions

Testenr: R.A, Freak
Date: Januanry 1980
Vabidation Suite Vension: 2.7

Confonmance Tests

Numben of tests passed: 116

Numben of tests failed: 22 {13 basic causes)

Details of failed tests

Test 6.1.2-3 shows that identifiens and neserved wonds
are not distinguished connectly over thein whole Length.

Test 6.2.2-1 produces an erron in scope.

Tests 6.4.3:3-1, 6.4.3.3-3 and 6.6.2.1-1 fail because
emply field Lists on empty reconds ane not allowed.

Test 6.4.3.3-4 indicates that a tag fiefd definition
48 not Local to the recond definition.

Tests 6.4.3.5-1 and 6.5.1-1 faif because a §ile of
puintens 48 not penmitted, non can a file be part of
a necond structune.

Tests 6.6.3.1-5, 6.6.3.4-1, 6.6.3.4-2 and 6.6.3.5-1
fail because the passing of procedures/gunctions as
parameters has not been impCemented.

Tests 6.6.5.2-3 and 6.6.5.2-5 fail because eof is not

set on an empty f{fe, non is it set aften a rewnite.

Test 6.6.5.3-2 gaits because dispose has not been
implemented.

Test 6.6.5.4-1 fails because the procedurnes pack and unpack
have not been implemented.

Test 6.8.2.4-1 fails because non-Local gotos are not
perunitited.

Test 6.6.3.5-4 fails because a spanse case statement will
not compile. (Thene 4s a Limit on the §ize of each procedure).

Test 6.8.3.9-1 fails because the assignment to a for
statement conthol variable follows the evaluation of the
ginst expression. Use of extreme values in a fon state-
ment produces an {nfinite Loop [(test 6.8.3.9-17.

Tests 6.9.4-4 and 6.9.4-7 fail because the wniting of
neal values does not conform to the standard and the
wiiting of boolean values is not penmitted.

Devdance Tests

Number of deviations conrectly detected: 56

Number of tests showing thue extensions: 7 (4 actual extensions)
Number of tests not detecting enmronecuws deviations: 25 {12 basic causes)

Numben of tesats faifed: 6 (2 basic causes)

Details of extensions:

Tests 6.1.7-6 and 6.4.5-11 show that strings are allowed
Lo have bounds other than 1..n and that compatible strings
can have different numbers of components.

Tests 6.8.3.9-9 and 6.8.3.9-14 indicate that the fon-
contrnol variable does not have to be Local to the
immediately enclosing block.

Tests 6.10-1 and 6.10-3 show that §ile parameters are
4gnoned and the predefined identifien output may be re-
defined.

Test 6.10-4 shows that a program does not have to have a
progham statement.

Delails of deviations not detected:

Test 6.1.2-1 shows that nil may be nedegined.

Tests 6.1.7-11 and 6.4.3.2-5 show that a null string 4s
accepted by the compilen and that strings may have othen
than a subrange of integers as bounds.

Test 6.2.1-5 shows that an unsited Label is not detected,

Tests 6.2.2-4, 6.3-6 and 6.4.1-3 contain a common scope
erron which is not detected.

Tests 6.3-5 and 6.7.2.2-9 show that the unary operaton, +,
may be applied to non-arithmetic operands.

Teats 6.4.5-2, 6.4.5-3, 6.4.5-4, 6.4.5-5 and 64.5-13

show that {dentical compatibifity is not enforced.

Test 6.6.2-5 shows that a function without an assignment
Lo the gunction variable is not detected.

Tests 6.6.6.3-4 and 6.6.6.4-6 show that neal parameters
ane aflowed fon the §unction succ and pred, while trunc
and nound can have integer panametens.

LT# SKIN TVISVd

086T "HI¥VW

6 39vd



Teats 6.8.2.4-2 and 6.8.2.4-3 show that a goto between
branches of a statement is peamitted.

Tests 6.8.3.9-2 and 6.5.3.9-3, 6.8.3.9-4 and 6.8.3.9-16
show that a fon-controf vaniable may be altered in the
nange of the fon statement.

Test 6.8.3.9-19 shows that nested fon statements using
the same control variable are not detected.

Test 6.9.4-9 shows that integens may be written using a
negative fonmat.

Details of gailed tests:

Tests 6.6.3.5-2, 6.6.3.6-2, 6.6.3.6-3, 6.6.3.6-4 and
6.6.3.6-5 fail because the passing of procedunes/functions
as parameterns has not been implemented.

Teat 6.8.2.4-4 fails because non-Local gotos have not been
Aimplemented.

Ermron handling:

Numbet. 0§ errons comnectly detected: 14
Number of errons not detected: 28 {14 basic causes)
Numben of tests failed: 4 (1 basdic cause)

Detadils of evons not detected:

Test 6.2.1-7 shows that variables are initialized to what
was previously Legft in memony.
Teals 6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7 and 6.4.3.3-8 indicate

that no cheching 4is performed on the tag §ield of variant
reconds .

An assignment to an emply recond is not detected in test
6.4.3.3-12,

Tests 6.4.6-7, 6.4.6-8 and 6.7.2.4-1 indicate that no
bounds checking is perjorumed on set operations and oven-
Lapping asets ane not detected.

Tests 6.5.4-1 and 6.5.4-2 show that a nil pointer or an
uninitialized pointer are not detected before use.

Test 6.6.2-6 shows that a function without an assignment
2o the function variable is not detected.

Test 6.6.5.2-1 shows that a put on an input §ile is not
detected.

Test 6.6.5.2-2 shows that a get past eof is not detected.

Test 6.6.5.2-7 indicates that a §ile buffer variable can
be altered iflegally.

Tests 6.6.5.3-7, 6.6.5.3-8 and 6.6.5.3-9 fail because no
checks are insented to check pointers after they have been
assigned a value using the variant foam of new,

Tests 6.6.6.4-4, 6.6.6.4-5 and 6.6.6.4-7 indicate that no
baumihjsl checking is pernformed on the functions succ, pred
on cha.

Teats 6.7.2.2-6 and 6.7.2.2-7 show that integer overflow
and undenflow conditions ane not detected.

Tests 6.8.3.5-5 and 6.8.3.5-6 show that if the value of

the case dindex does not connespond 2o a case Label, control
passes to the statement aften the case statement. The
eon 48 not detected.

Tests 6.8.3.9-5, 6.8.3.9-6 and 6.8.3.9-17 show that a for
control vaniable may be used aften the §on Loop has
teminated. Nested fon Loops using the same control
variable are not detected.

Details of failed tests:

Tests 6.6.5.3-3, 6.6.5.3-4, 6.6.5.3-5 and 6.6.5.3-6 fail
because dispose has not been impLemented.

Impfementationdegdined

Number of tests mun: 15

Numben of tests incomnectly handfed: 0

Details of implementation-definition:

Test 6.4.2.2-7 shows maxint to be 32767.
Tests 6.4.3.4-2 and 6.4.3.4-4 show that Lange sets arne

accepted by the compiler but a nun-time Limit of 512 elements

44 dmposed. A set of chan is allowed.

Test 6.6.6.1-1 shows that no standarnd procedunes on functions

may be passed as parametens.

Test 6.6.6.2-11 gives some details of neal number fonmats
and machine characteristics.

Tests 6.7.2.3-2 and 6.7.2.3-3 show that boclean expressdons
are §ully evaluated.

Tests 6.8.2.2-1 and 6.8.2.2-2 show that a variable i4
selected befone the expression is evaluated in an assignment
statement.

Tests 6.9.4-5 and 6.9.4-11 show that the numben of digits
in an exponent field varies according to the sdize of the
exponent. The default output §i{eld width fon integers and
Keals also vanies according to the sdze of the expression
printed.

LT# SM3N TYISVd

0861 “HINVK

39vd

¢6




Test 6.10-2 indicates that a rewnite cannot be penformed
on the standand §4ile, output.

Teats 6.11-1, 6.11-2 and 6.11-3 show that the alternative
comment delimitens have been impemented but no othen
equivalent symbols have been impLemented.

Tetails of failed tests:

Test 6.5.3.5-8 fails - a Lange case statement causes the
sdze of the procedwre to ovenflow the maximum Limit.

Quality Measurement Extensions
Number of tests aun: 22 Number of tests run: |
Numben of tests incomrectly handled: 1

Test 6.5.3.5-14 shows that the othemvise clause in a case

LT# SHIN TVISYd

ok © R

Tests 5.2.2-1 and 6.1.3-3 show that identifiens are disting-
wished oven their inst eight characters only.

Test 6.1.8-4 indicates that no help is provided fon detect-
ing unclosed comments,

Tests 6.2.1-6 and 6.2,1-9 indicate that more than 50 types
may be compifed and monre than 50 Labels may be declared
and sited. Test 6.5.1-2 shows a Limit of 70 identifiers
in a List has been dimposed.

Test 6.4.3.2-4 shows that an aray with an integer index-
Lype 44 not penmitted.

Test 6.4.3.3-9 shows that variant fields of a recrod use
nevense connelation fon stonage.

Test 6.4.3.4-5 (Warnshatl's algornithm) took 166 bytes of code.
No timing information is available.

Test 6.6.1-7 shows that procedures may be nested 2o a depth
0f 7. Fon statements may be nested to a depth greaten than
15 {teat 6.5.3.9-20) but with statements may be nested %o
a depth of 11 (test 6.8.3.10-7).

Tests 6.6.6.2-6, 6.6.6.2-7, 6.6.62-&, 6 6.6.2-9 and 6.6.6.2-10
tested the sqnt, atan, exp, sin/cos and £n functions and
all tests wenre completed successfully. (The tests had to
be modified to avoid the Limit placed on procedunre size).

Test 6.7.2.2-4 shows that division into negative operands
48 Anconsistent but division by negative operands is consis-
ten. The quotient is trunc (A/B) fon all operands. mod{a,b)
Lies 4in {0,b-1).

Test 6.8.3,5-2 shows that no warning {s gdiven for a case
constant which cannot be neached. "

Teat 6.6.3.9-18 shows that no nange checks are {nsented on
a for control variable agter a gon Loop.

Test 6.9.4-10 shows that the §ile, output, is ﬂudhed at
end of job and test 6.9.4-14 shows that recursive 1/0 using
the same {ike is alfowed.

statement has not been impfLemented.
BN R o i TR

Pascal Validation Suite Report

Pascal processor identification

This Pascal-VU compiler produces code for an EM-1 machine as de-
fined in ([11. It is wup to the implementor of the EM~1 machine
whether errors Like integer overflow, undefined operand and range
bound error are recognized or not. Therefore it depends on the
EM-1 machine implementation whether these errors are recognized in
Pascal programs or not. The validation suite results of all known
implementations are given.

There does not (yat) exist a hardware EM-1 machine. Therefore,
EM-1 programs must be interpreted, or translated into instructions
for a target machine. The following implementations currently ex-
ist:

Implementation 1: an interpreter running on a PDP-11 (using
UNIX). The normal mode of operation for this interpreter is
to check for undefined integers, overflow, range errors etc.

Implementation 2: a translatar into PDP-11 instructions (using
UNIX), Less checks are performed than in the interpreter, be-
cause the translator is intended to speed up the execution of
well~debugged programs.

0867 "HOUVH

h6  39vd



Test Conditions
Test 6.6.3.3-3:

.8.2.2-2: ; tod.
Test geeeral pointer type deiinitions (“rekord) referring to Tester: J.W.Stevenson

} . Date: December 19, 1979
the same record type are incompatible. Vatidation Suite version: 2.0, dated June 19, 1979

Test 6.6.3.4-2:

. The final test run is made with a stigh:ly modified validation =
Only a single procedure identifier is allowed in a formal suite. The changes made can be divided into the following g
procedure parameter section. categories: g:
Test 6.9.4-4: Typing errors &
Reals printed in scientific notation always contains an (34
exponent part, even for exponent equal to zero. w
Test 6.4.3.5-1: hal
Latest standard proposal the identifier 'ptrtoi’ must be a type-identifier, not a ~
variable~identifier.
A newer version of the proposal is received in Movember 1979,
Because of the differences between these versions the follow- Test 6.6.3.3-1:
ing tests are changed: The type of ‘colone' should probably be ‘subrange', not
‘colour', because the types of actual and formal variable
Test 6.1.5-6: parameters should be identical.
The case of any letter occurring anywhere outside of a2
character-string shall be insignificant in that oc- Test 6.6.3.1-5:
currence to the meaning of the progran. In pessing a procedure as actual parameter the parameters ™
must not be specified. So Line 29 must be changed to
Test 6.4.3.3-3: conform(alsocanforms)
Test 6.4.3.3-11:
Test 6.4.3.3-12: Test 6.6.5.3-1:
Definition of an empty record is not allowed. This test is incorrectly terminated by "END.' instead of
‘end.'.
Test 6.4.3.3~10Q:
The case-constants introducing the variants shall be of Test 6.6.1-7:
ordinal-type that is compatible with the tag-type. The terminating ‘'end.' is incorrectly preceded by a
space. =
Test 5.5.1-1: >
The type of the component of a file-type shall be neither Test 6.9.4-14: =2
a file~type nor a structured-type with a file component. The program parameter ‘f' must be removed. =
Test 6.9.4-4: Portability probleas o
Test 6.9.4-5: X
The character indicating the exponent part of a real as
written in scientific notation is either 'e' or 'E'. Test 6.6.3.1-2:
A set of integer subrange containing more than 16 ele-
Test 6.9.4-4: ments may give problems for some implementations. A spe-
The representation of a positive real in fixed poing for- cial option must be provided to the Pascal-VU compiler,
mat does not include a space if it does not fit in the spacifying the number of elements.
specified field width.
Tast 6.6.6.2-3:
Test 6.9.4-7: tot all implementations support reals with 9 decimals of
The case of each of the characters written as representa- precision. The precision supported by Pascal-VU is about
tion for a Boolean is implementation-defined. 7 decimals €24 bits).
Test 6.9.4~9: i Erroneous programs
Zero or negative field width 4is allowed in write- ]
parameters. Some tests did not conform to the standard proposal of Febru-
Conformance tests ary 1879. It is this version of the standard proposal that is
used by the authors of the validation suite.
humber of tests passed = 138 :
Number of tests failed =1 Test 6.3-1: -
Test 6.6.3.1-4: >
petails of failed tests Test 6.4.5-5; &
The meaning of these test program is altered by the trun-
cation of their identifiers to eight characters. [v)
Test 6.1.2-3: w

R .

Character sequences starting with the 8 charathrs pr:

cedur' or ‘function' are erroneously classified as the
3 1

word-symbols ‘procedure’ and 'function'.

Test 6.4.3.3-1:

A record definition consisting of a single semicolon is
itlegal.

oo




Peviance tests

Number of deviations correctly detected = a1
Number of tests not detecting deviations = 12

petails of deviations

The following tests fail because the Pascal-VU compiter only

generates a warning that does not prevent to run the tests.

Test 6.2.1-5:

A declared Llabet that is never defined produces a warn~

ing.

Test 6.6.2-5:

A warning is produced if there 1is no assignaent 1to

function—identifier.

The following tests are compiled without any errors while they

‘do not conform to the standard.

Te it 6.2.2-4:
Test 6.3-6:
Test 6.4.1-3:

undetected scope error. The sctope of an identifier should
start at the beginning of the btock in which it is de-
clared. In the Pascal-VU compiler the scope starts just

after the declaration, however.

Test 6.8.2.4-2:
Test 6.8.2.4-3:
Test 6.8.2.4-4:

The Pascal-VU compiler does not restrict the ptaces from

where you may jump to a label by a goto-statement.
Test 6.8.3.9-2:
Test 6.8.3.9-3:

Test 6.8.3.9-4:
Test 6.8.3.9-16:

There are no errors produced for assignments to 2 vari-

able in use as controt-variable of a for-statement.

Error handling

The results depend on the EM-1 implementation.

Number of errors correctly detected =
Implementation 1: 26
Implementation 2: 12

" Number of errors not detected =
Implementation 1: 19
Imp' -~entation 2: 33

petails of errors not detected
Test 6.2.1-7:
It is allowed to print all integer values, even the

cial ‘undefined® value.

Test 6.4.3.3-5:
Test 6.4.3.3-6:

spe-

Test 6.4.3.3-7:

Test 6.4.3.3-8:
The notion of ‘current variant® is not implemented, not
even if a tagfield is present.

Test 6.4.6-4:
Test 6.4.6-5:
Implementation 2: Subrange bounds are not checked.

Test 6.4.6-7:

Test 6.4.6-8:

Test 8.7.2.4-2:
It the base-type of a set is a subrange, then the set
elements are not checked against the bounds of the
subrange. Only the host-type of this subrange-type is
relevant for Pascal-VU.

Test 6.5.3.2-%:
Implementation 2: Array bounds are not checked.

Test 6.5.46-1:

Test 6.5.4-2:
Implementation 2: Nil or wundefined pointers are not
detected.

Test 6.6.2-6:
An undefined function result is not Jetected, bzcause it
is never used in an expression.

Test 6.6.5.2~6:

Test 6.6.5.2-7:
Changing the file position white the window is in us2 as
actual wariable parameter or as an element of the record
var iable List of a with—-statement is not detected.

Test 6.6.5.3-3:

Te<t 6.6.5.3~4:
Implementation 2: pisposing nil or an undefined pointer
is not detected.

fast 6.6.5.3-5:

Test 6.6.5.3-6:
dispasing a variable while it is in use as actual wvari-
aute parameter or as an element of the record variable
list of a with-statement is not detected.

Test 6.6.5.3-7:

Test 6.6.5.3-8:

Test 6.6.5.3~9:

It is not detected that a record variable, created with
the varfant form of new, is used as an operand in an ex-
pression or as the variable in an assignment or as an ac~
tual value parameter.

Test 6.6.6.4-4;

Test 6.6.6.4-5:

Test 6.6.6.4-7:
implementation 2: There are no range checks for pred,
succ and chr.

Test 6.7.2.2-3:

Test 6.7.2.2-6:

Test 6.7.2.2-7:

Test 6.7.2.2-8:
Inplementation 2: Division by 0 or integer overflow is
not detected.

LT W 8 “ oy

LT# SKIN VISVd

08617 “HI¥VMW

96 394



Impleaentation dependence

tiaber of test run = 15
tiumber of tests incorrectly handied = 0

Details of implementation dependence

Test

Test

Test

Test

Test

Test
Test

Test

Test

Test

Test

Test

Test
Test
Test

6.4.2.2-7;
Maxint = 32767

6.4.3.4~2:
'set of char' allowed.

6.4.3.4~4;
Up to 256 elements in the range 0..255 in a set.

6.6.6.1-1:
Standard procedures and functions are not allowad as
parameter.

6.6.6.2-11:

Details of the machine characteristics regarding real
numbers.

§.7.2.3-2:
6.7.2.3-3:
Boolean expressions fully evaluated.

6.8.2.2-1:

6.8.2.2-2:

The expression in an assignment statement is evaluated
before the variable selection if this involves pointer
dereferencing or array indexing.

6.9.4-5;
Number of digits for the exponent is 2.

6.9.4.11:
The default field widths for integer, Boolean and real
are 6, 5 and 13.

6.10-2:
Rewrite (output) is 2 no-op.

6.11~1:

6.11-2:

6.11-3:

Alternate comment delimiters implemented, but not the
other equivalent symbols.

Quality aeasurement

hunber of
Number of

tests run = 23
tests incorrectly handled = O

Results of tests

Te st

5.2.2-1:

Test 6.1.3-3;

Cnly 8 characters are significant in identifiers.

- e

Test

Test
Test
Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

6.1.8-4: .
Both ';' and '{* cause a warning message if they are

found inside comments.

5.2.1~
6.5.1
Large

6.2.1-

8
9
2 s
Lists of dectarations are possible in each block.

6.4.3.2-4:
An ‘arraylinteger] of' is not allowed.

6.4.3.3-9;
Variant fields of a record occupy the same space, using
the declared order.

6.4.3.4~5;
Size and speed of Warshall's algorithm depends on the im-
plementation of EM-1

Implementation 1:
size: 31 bytes
speed: 4.20 seconds

Implementation 2:
size: 204 bytes
speed: 0.62 seconds

6.6.1.7:
At Lleast 15 levels of nested procedures allowed.

6.7.2.2-4:
‘div' is correctly implemented for negative operands.

6.8.3.5-2:
The compiter requires case constants to be compatible
with the case selector.

6:8.3.5-8:
Large case statements are possible.

6.8.3.9-13:
The value of the control variable of a normally terminat-—
ed for-statement is equal to the final value.

6.8.3.9-20:
At least 20 nested for-statements aliowad.

6.8.3.10~7:
At least 15 nested with-statements allowed.

6.9.4-10:

Line marker appended at end of job if the Last character
written is not a line marker.

6.9.4-14:
Recursive i/0 using the same file allowed.

The following 5 tests test the mathematical functions. For

each

the follawing three quality measures are extracted fron

the test results:

meanRE: mean relative error.
maxRE: maximum relative error
rasRE:  root-mean~square relative error

LT# SMIN YISV

086T “HIYVK

L5 39vd



Test 6.6.6.2-6:
Test sqrt{x): no errors and correct results,

Test 5.6.6.2-7:
Test arctan(x): may cause underflow or underflow errors.
meanRE: 2 *+ -30.46
maxRE: 2 »* -22.80
rmsRE: 2 ** -24.33

Test 6.6.6.2-8: .
Test exp{x): may cause underflow or overflow errors.

meanRE: 2 *xw» ~=25,37
maxRE: 2 ** -17.62
rmsRE: 2 ** -19.56

Test 6.6.6.2-9:
Test sin(x): may cause underflow errors.
meanRE: 2 *+ -22.98
maxRE: 2 *» =10.43
rmsRE: 2 *» ~15.59

Test cos{x): may cause underflow errors.
meanRE: 2 *% -21.69
maxRE: 2 ** — 8.23
rmsRE: 2 *~ -13.37

Test 6.6.6.2-10:
Tast Ln(x): no errors
meanRE: 2 ** -25.12

maxRE: 2 *x —21.97
rmsRE: 2 *% =23.75

Extensions

tusoer of test run =0

References

[1] A.S.Tanenbaum, J.W.Stevenson, J.M.van Staveren, “Description of

experimental machine architecture for use of block structured

tenguages'’, Informatica rapport 1R=54.
2] 1s¢ standa;d proposal XSOITC97ISC57N462, dated February 1979.d
sase propasal, in slightly modified form, can be foun

‘ ipti " ftuware prac~
A.M.Addyman e.a., "A draft description of Pascal ,.So , -
tice agd exper;ence, tlay 1979. An improveq version, received No
venper 1979, is followed as much as possible Tor the current

Pescal-VU.

PAGRAGR AR AR A A A b Ag

CDC-6000 RELEASE 3

PASCAL VALIDATION SUITE REPORT
Pascal Processor Identificatjion
Computer: Control Data Corp. CYBER 74, running NOS 1.3
Processor: CDC-6000 Release 3 (Zurich Compiler) of January,
1979
Test Conditjons
Tester: Rick L. Marcus
Date: January, 1980

Validation Sulte Version: 2.2

Conformance Tests
Number of tests passed: 128

Number of tests failed: 11

Detalls of falled tests

Test 6.1.8-3 is not relevant; only one form of comment
is allowed.

Test 6.2.2-3 fails because the compiler thinks that the
acope of node = real covers proceduge ouch.

Test 6.2.2~8 falls because assignment to a function {s
allowed only within the function body.

Test 6.4.3.3~1 faills because the declaration for an
empty record (D) 18 not allowed. 1If the semi-colon is
removed from the regord definition then there is no
error, which can be seen in the next test, 6.4.3.3-3.

Test 6.4.3.3-4 fails because the tag-field in a record
may not redefine an existing type declared elsewhere.

Test 6.5.1-1 faile because the compiler does not allow a
£ile of record... where the record contains a file as a
field. I believe the latest version of the standard

changes this. Our compiler will pass the test if files
of files are not allowed.

Test 6.6.3.1-1 fatls 1in procedure Testtwo because of
‘strict’ type checking. Paseing a variable of gtype
colour as a parameter of fype subrange causes the error.

Passing as a value paramter is allowed(i.e., procedure
Testone passes the test).

Test 6.8.3.5-4 falle because the range of case labels is
too large.

LT# SKIN TYISY4

0867 “HI¥VW

86 39V




Test 6.9.1~1 fails because eoln is not necessarily true
after the last character written on a line. The
operating system pads to an even number of characters on
a line with blanks.

Test 6.9.4-4 falls because the test assumes only two
places in the exponent field while there are three on
our CDC systems.

Test 6.9.4-7 fails because Booleans are right justified
on CDC 6000 Pascal, not left as in the test. I believe
the lateat standard assumes right justification, so that
the compiler would pass the test in that case.

Deviance Tests

Number of deviations correctly detected: 76

Number of tests not detecting erroneous deviations: 18

Error Bapdling

Number of erro

Detajls of deviations
Test 6.1.2-1 shows that pi} 1s not & reserved word.

Tests 6.1.3-6 is not relevant as only upper case is
allowed anywhere in a Pascal program.

Test 6.2.1-5 shows that a labe]l may be declared without
being used anywhere in a program.

Tests 6.2,2~4, 6.3~6, 6.4.1-3 show that a common scope
error was not detected by the compiler.

Test 6.6.2-5 shows that a function need not be assigned
a value inside its body. The value of A after the
assignment ( A := ILLEGAL(A) ) i8s zero.

Test 6.6.3.5-2 shows that strict type compatibility of
functions passed as parameters is not required.

Tests 6.8.2.4-2, 6.8.2.4~3, 6.8.2.4-4 show that a goto

between branches of a statement 1s permitted.

Tests 6.8.3.9-2, 6.8,3.9-3, 6.8.3.9-4, and 6.8.3.9-16
show that an assignment may be made to a for etatement
control variable.

Test 6.8.3.9-14 shows that a for loop control variable
may be a variable global to the whole program.

Test 6.8.3.9~19 shows that in nested for loops, 1f both
have the same control variable, then the value gets
changed by the inner loop and falls out of the outer
loop after 1 iteration.

Test 6.9.4-9 shows that characters may be written even
if the field width 18 too small.

rs correctly detected: 24

Number of errors not detected: 21

Number of tests incorrectly handled: 1

Details of errors not detected

Test 6.2.1~7 shows that the value of I is that which is
left over from procedure q (I=3).

Tests 6.4.3.3-5/6/7/8 1indicate that no checking is done
on the tag field of variant records.

Test 6.4.3.3-12 shows that an empty fpecord can be

assigned an undefined empty value-

Test 6.4.6~8 shows that strict type compatibility 1s not
enforced for sets passed by value.

Test 6.6.2-6: The error was not detected. The value of
the variable CIRCLEAREA was zero after the assignment.
1t seems that a function is assigned the value zero if
no assignment is made in its body.

Test 6.6.5.2-2 faills to catch the error because of
system padding of blanks to an even number of blanks.

Test 6.6.5.2-6/7 shows that 1/0 is not implemented
according to the standard.

Test 6.6.5.3-5 fails because no check is made by the
runtime system to see if the variable being disposed of
is a parameter to the procedure which calls dispose.

Tests 6.6.5.3-6/7/8/9 all fail.

Tests 6.7.2.2-6/7 fail because an integer variable does
not cause an overflow error when it 18 over the value of
maxint.

Tests 6.8.3.9-5/6 show that the value of an integer
control variable is set to —576460752303423487 after the
for loop.

Test 6.8.3.9-17 shows that two nested for loops may have
the same control variable.

Detajls of tests incorrectly handled

Test 6.6.6.3-3: An overflow of the real variable reel
caused termination of the program.

Implementationdefined

Number of tests run: 15

Number of tests incorrectly handled: 0

Deatails of implementation-dependence
Test 6.4.2.2=7 shows maxint to be 281474976710655.

Tests 6.4.3.4-2/4 show that set bounds must be positive,
have no element whose ordinal is greater than 58, and

that get of char is not legal.

Test 6.6.6.1-1 1indicates that standard procedures and
functions are not allowed to be passed as parameters to
procedures and functions.

LT# SMIN TVYISYd

0861 “HIWVMW

56 39vd



Jt

it

Test 6.6.6.2-11 details some machine characteristics
regarding number formats.

Teats 6.7.2.3.2/3 show Boolean expressions are fully
evaluated.

Tests 6.8.2.2-1/2 show that a variable 1is selected
before an expression 18 evaluated in an assignment
statement.

Test 6.9.4=5 shows that the number of digits in an
exponent is 3.

Test 6.9.4-11 details the default field width specific~
ations: 10 for integers and Booleans and 22 for reals.

Test 6.10-2 shows that a rewrite is allowed on the file
output, but that it has no effect (i.e., output 1is not
rewritten) unless there is an actual local file of a
different name which replaces output on the control
statement to execute the program.

Test 6.11-1/2/3 show that alternate comment delimiters
and other alternate symbols have not been implemented.

Number of tests run: 23

Number of tests incorrectly handled: O

Regults of gquality measurementg

Teats 5.2.2-1 and 6.1.3=3 show that 1Jentifiers are not
distinguished over their whole length; only the first 10
characters are significant.

Test 6.1.8-4 shows that no warning is given if a valid
statement or semicolon is embedded in a comment.

Tests 6.2.1-8/9 and 6.5.1-2 indicate that large lists of
declarations may be made in each block.

Test 6.4.3.2-4 shows that an array with an indextype of
INTEGER 1is not permitted. At this site the use of
INTEGER for an indextype 1s permitted only im the
current implementation of dynamic arrays.

Test 6.4.3.3-9 shows that the variant fields of a record
occupy the same space, using the declared order.

Test 6.4.3.4=5 (Warshall’s algorithm) took 0.236 seconds
CPU time and 171 words (10260 bits) on the CDC CYBER 74.

Test 6.6.1-7 shows that procedures cannot be nested to a
level greater than 9.

Tests 6.6.6.2-6/7/8/9/10 tested the sqrt, atan, exp,

sin/cos, and ln functions and all tests showed there
were no significant errors in their values.

Test 6.7.2.2-4 shows that diy and mod have been imple-
mented consistently. mod returns the remainder of div.

Test 6.8.3.5-2 shows that case constants do not have to

Extension

be of the same type as the gase index, if the cage index
is a subrange, but the constants must be compatible with
the case index.

Teat 6.8.3.5-8 shows that a large case statement is
permissible ( >256 selections ).

Test 6.8.3.9-18 shows that the use of a control variable
is allowed after the f£or loop. The run-time system
catches the use of the control variable this time
because after exiting the loop the variable is set to
the value found in Test 6.8.3.5.9-5, and the gage
variable is out of range.

Tests 6.8.3.9-20 and 6.8.3.10~7 indicate that fogr and
Y%gh statements may be nésted to a depth greater than

Test 6.9.4-10 shows that file buffers are flushed at the
end of a the program.

Test 6.9.4-14 indicates that recursive I/0 is permitted,
using the same file.

Number of tests run: 1

Number of tests incorrectly handled: ©

Details of extensions

Test 6.8.3.5-14 shows that the “OTHERWISE’ clause has
been implemented in a case statement.

OO

LT# SM3N TY¥ISYd

0861 “HINYY

00T 39vd



0.

1.

TI PASCAL
DATE/VERSION
Release 1.6.0, January 1980.
IMPLEMENTOR/MAINTAINER/DISTRIBUTER

Implemented by Texas Instruments.
from TI sales offices, or write to

Information is available

Texas Instruments
Digital Systems Group, MS784
P. O. Box 1444
Houston, Texas 77001
or call (512)A250-7305. Problems should be reported to
Texas Instruments
Software Sustaining, MS2188
P. O. Box 2909
Austin, Texas 78769

or call (512) 250-7407.
MACHINE

‘The compiler runs on a TI 990/10 or 990/12. The compiled
object code can be linked for execution on any member of the 990
computer family.

SYSTEM CONFIGURATION

The compiler runs under the DX10 operating system (release
3) and requires at least a TI DS990 Model 4 system, which
includes a 990/10 with 128K bytes of memory and a 10 megabyte
disk. (More than 128K of memory may be required, depending on
the size of the operating system.) Compiled programs can be
executed on any FS990 or DS990 system, using the TXS, TX990, or
DX10 operating systems.

DISTRIBUTION

Available on magnetic tape or disk pack. Contact a TI
salesman for a price quotation and further details.

DOCUMENTATION

Complete user-level documentation is given in the "TI Pascal
User“s Manual®, TI part number 946290-9701.

10.

11.

MAINTENANCE POLICY

TI Pascal is a fully supported product, Bug reports are

welcomed and maintainence and
progress.

STANDARD

further development work are in

TI Pascal conforms to "standard" Pascal, with the following

principal exceptions:
*

A GOTO cannot be used to jump out of a procedure.
* fThe control variable of a FOR statement is local

to the loop.

* fThe precedance of Boolean operators has been
modified to be the same as in Algol and Portran.

* The standard procedures GET and PUT have been
replaced by generalized READ and WRITE

procedures.

TI Pascal has a number of extensions to standard Pascal,
including random access files, dynamic arrays, ESCAPE and ASSERT

statements, optional OTHERWISE
formatted READ.

MEASUREMENTS

The compiler occupies a 64K
speeds are comparable to the 990

RELIABILITY

The system has been used by
TI since October of 1977, and
since May of 1978. Updates have
and January 1980. This 1long

maintainance makes this a reasonably stable and

product.

DEVELOPMENT METHOD

clause on CASE statements, and

byte memory region. Compilation
Fortran compiler.

several different groups within
by a number of outside customers
been released in January 1979
history of extensive use and
reliable

The compiler produces object code which is link-edited with
run-time support routines to form a directly executable program.
The compiler is written in Pascal and is self-compiling.

LIBRARY SUPPORT

TI Pascal supports separate compilation of routines and
allows linking with routines written in Fortran or assembly

language.

LT# SM3N VISV

0861 “HI¥YW

10T 39vd



-Q=

-le

-2w

P

-4-

-5-

-§-

N

WWW

Intel_8080/8085 /AMeta Tedn\

Specializing In Innovative Information Processing

Pascal/MT Implementation Specification

November 8§, 1979
Ralease 2.5

Distributed, Imolementad and Maintained by:

MetaTech, B8672-1 Via Mallorca, La Jolla, Ca. 92037
(714) 223-5566 x289 or (714) 48%-6618

Machine: Intel 8080/8085 and Zilog 280

System Configuration:

Pascal/MT operates under the CP/M operating system (or and equivalent system such as CDOS,
IMDOS, etc.) in a minimum of 32K bytes of memory.

The package consists of a compiler and symbolic debugger and generates 8080/280 object
code directly from the Pascal program sourcs.

The symbolic debugging package is optiocnally copiled into the output object file by the compiler.

Distribution:
e Pasca package is distributed on a single density 8~inch floppy diskette which contains:

The compiler for Pascai/MT

The symbolic debugging package

The taxt for the compller arror messages

Two utility programs written in Pascal/MT to illustrate the facilities of the language

Cost of a single system license for Pascal/MT {(includes manual) is $99.95
Manual available for $10.00
Source for the run~-time package is $50.00

Master Charge, Visa, UPS COD, and Purchase Orders

Standard:
asca implemants (in 2.5) a subset of the full Pascal language. This was done to generate
both space and time efficient code for 8-bit microcomputars.

Pascal/MT also contains a number of “built-in” procedures. This allows scurce code using
these procedures .to be“portable to othar systems providing appropriate routines are implemented
on the other systems.

Pascal/M! omits the following featuras from the Pascal standard (Jensen & Wirth 2nd Ed.):
*No LABEL declaration and thersfors no GOTOs
Non-standard file support for CP/M files
*Enumeration and Record types not implemented
PACKED is ignorad on boolean arrays
All variables and parametexs are allocated statically
Items marked with a * are being implemented in the subsequent ralsases of Pascal/MT.

Extensions:
Pascal/#F contains the following extensions (in release 2.5);:
Pre-deciared arrays "INPUT" and "OUTPUT” for manipulatiag I/0 ports directly.
EXTERNAL assembly language procedure declarations for using pre-assemblad
routinas (using PL/M parameter passing)

QOPEN, CLOSE, DELETE, CREATE, BLOCKREAD, BLOCKWRITZ routines for accessing CP/M files.
Logical un-typed boolean operators for and (&) gz (!) and not @)
l8-digit BCD arithmetic package.

ggllu:!ggnulx

ompllacion speed Ls approximately 600 lines/min. 6K bytes symbol table space is available in
a 32K system and J8K bytes table space is available in & 64K system. Run-time code (without
debugger) is 5 to l0 times faster than ?-cods systems, and is 1.3 o ! times larger than P-code
syscams (but Pascal/MT requires no intergreter).,

V4 abilicys
ascal,) eiease 2.3 is available lrwnediately.

Enhanced -eleasas will be macde periodically throughout :he next 7ear.

Also available from: FMG Corp (817) 294-2510 for TRS-80
* Lifeboat Assoc. (212) 580-0082 for all formats

- Wei n
{ See GOLEM B (Weizmann) )}

Motorola 6800 (Dynasoft Systems

This is a compiler for a cassette—based system, and sells for $35.
Dynasoft Systems
POB St

Windsor Junction, North Saskatchewan BON 2V0
Canada

Motorola 6809 (Motorola)

MOTOROLA 6809 PASCAL - CHECKLIST FOR PASCAL NEWS

0. DATE/VERSION

12 December 1979
Version 1,0 relcased September 1979
Version 1.1 to be released February 1980

1. IMPLEMENTOR/DISTRIBUTOR/MAINTAINER

Motorola Microsystems
P.0. Box 20906
Phoenix, Arizona 85036
(602) 831-4108

2. MACHINE
Motorola 6809 EXORciser

3. SYSTEM CONFIGURATION

MDOSP9 @#3.98 running on 6809 EXORciser with 56K
bytes and floppy-disk drive.

4, DISTRIBUTION
On floppy diskette (M680SPASCLI) for $1500 from
Motorola Microsystems
P.0. Box 20906
Phoenix, Arizona 85036

Orders should be placed t} h 1 1
(602) 962-3226 p hrough loca

Motorola Sales Office or Distributor

LT# SKIN TYISVd

0867 “HIUVN

20T 39vd



5. DOCUMENTATION
“Motorola Pascal Language ianual (M68PLM(D1)}) describing
Motorola implementation (56 pages). 6809 Pascal Interpreter
User's Guide (M68ZIPASCLI(D1)) describing operation of
interpreter (48 pages).
6.  MAINTENANCC POLICY
Bugs should be reported to software support.
Subsequent releases will include corrections.
7. SHnAR
Restrictions: May not specify fovmal paran:ters which are procedore
or functiui fdentiticrs,  Tlosling point nunbers ore not fmplenented,
Packed atlyibuic has no efiect, AN will be implemented in future
releases,  Enhancenments: Address specification for variables;
alpharumeric labels: onooxit statensnty external procedur e and
function declarativas: non-decimal iategers; otherwise ¢lause
in case statement; vuntine file assignments; struciured function
values; siring variables and string functions.
8. _MEASUREMENTS
Compiles in 56X bytes. Runtime support requires 3-4K byte
interpreter wodule,
__._..9 h R_E.' ‘.I..M;ll'_lly‘
Very good--first released in September 1979 with few major probiems
reported.
10,  BDEVELOPMENT METHOD
One pass recursive descent compiler generates variable length
P-code. One pass P-assembler (second release) generates a
compact, position-indcpendent code for interpreter, Code and
interpreter both ROi‘able for use in non-EXORciser environment.
11. LIBRARY SUPPORT

Standerd Pascal procedures and functions, plus the ability to
link assenbly language routines.

RCA 1802 (Golden River)

The information on this compiler is unclear. It appears to be all or
partly in ROM, and sells for & 40.

The Golden River Co., Ltd.
Telford Road.

Bicester, Oxfordshire OX6 QUL
England

Zilog 7-80 (Digital Marketing)

( See 2ilog 2-80@ (Digital Marketing) )

Zilog Z-80 (lthaca Intersystem

This compiler runs under CP/M and produces macro-assembier code. The
price is $275,

‘Ithaca Intersystems (formerly Ithaca Audio)
1650 Hanshaw Road

P.0. Box 91 *
Ithaca, NY 14850

Zilog Z-80 (MetaTech

{ See Zilog Z-80 (MetaTech) )

(T# SMIN TVYISYd

0861 “HOUWW

€0T 39vd



GOLEM B (Weizmann) -
Yo o

DEPARYMENT OF APPLIED MATHEMATICS

THE WEIZMANN INSITIUTE OF SCIENCE

AEKOVOT - IBRARL bYkawy - MI2INN

nenw nplosnnd nphaon

Pascal User's Group
C/o J. Minex
University Computer Center: 227 EX

208 SE Union St.

September 5, 1979

University of Minnesota
Minneapolis, MN 55455

Dear Mr. Minmer,

I have transported the Zurich P4 Compiler to the GOLEM B computer of the

wWeizmann Institute. Following is a checklist for Implementation Notes:

2.
3.

Date/Vexsion. 79/09/03

Distributor/Implementor/Maintainer:

W. Silverman

c/o Dept. of Applied Mathematics
The Weizmann Institute of Science
Rehovot , Israel.

Machine: GOLEM B, 370-165.

gystem Configuration: GOBOS for GOLEM B (designed and built by WI). Also
produces P-CODE on our 370-165. Variants produce
P~CODE for the GA-16 and the 280; a loader, written in PASCAL is available
for the latter, and an interpreter is being checked out on our Z80 simulator
and on the TEKTRONIX 8001/8002A ,:Processor Lab,

Distribution: Source of compiler, configured for your machine as is P4,

with a few additional parameters, and of our Loader and addi-
tional package as they become available, on magnetic tape (9-track, 1600 BPI
or 7-track as required) within Israel. Send mini-tape to distributor -
mailing costs only. Special arrangements possible ocutside Israel.

Documentation: Same as P4 system plus additional P-Code and extra parameters
descriptions.

CABLE ADDRESS. WEIZINST (hracl) 1D'PI3DY [¥B PHONE: (054)81111-85151 (109D TELEX: 31934 (DPSU

Maintenance Policy: Bug reports receive prompt attention and replies.
’ Various optimization programs will be announced as
available.

Extensions to P4 (Standard):
Multiple global text files permitted and "FILE OF CHAR" properly processed;
Procedure/Function may be declared as formal parameter (no run-time check
for argument match);

PACK, UNPACK , ROUND, REWRITE ,RESET implemented;
e:el:e2 implemented for real e in WRITE-list;
MAXINT accessible as standard constant.
Non-Standard Extensions:
FORTRAN, EXTERN and independent compilation option (*$E+*),;
Additional digraphs and operator codes (e.g. "(.",".}",“&").
Measurements:

- Compilation speed: 1300 characters/second (measured compiling itself;
4442 lines x B0 characters per line in 280 seconds ~ 300 seconds with
listing).

~ Compilation space: 288000 8-bit bytes (this can be reduced somewhat
from the actual 1156416 4-byte words of storage, by reducing the stack/

heap which is nominally 128K bytes for GOLEM B - the basic level-0 stack
requirement is 6700 bytes, plus 700 bytes per recursion level of BODY and
a basic procedural overhead of 32 bytes per neated call).

- Execution speed: Approximately 1/5 as fast as PASCAL 8000 on our 370/165
(the GOLEM is intrinsically 1/2 as fast).

~ Execution space: 8.3 bytes / P-Code instruction (peep-hole optimization
improves this figure dramatically), plus data storage as follows:

Item Size Allignment
Stack element 8 bytes 8 bytes
Real 8 8 "
Integer 4 " 4 "
Pointer 4 " 4 "
Character 1 byte byte
Set’ 1-8 bytes byte
Boolean 1 bit bit

Note that Boolean arrays are optimally stored, l-bit/element; the cost in
access overhead is modest. Declared scalars are represented as integers.

LT# SMIN TVISVd

0867 “HIUVMW

0T 39w



9.

10.

11.

Reliability:

Excellent - this is primarily due to the high quality of the P4 system
we received from Zurich. We have conserved their design and implement-
ation principles in all modifications. Two sites, both of them at the
W1, are currently using the system. Two others are considering it.

Development Methods

The P4 Compiler was transported to the GOLEM in approximately three months
(real time) by one person. The P-Code is expanded as macros by our Assemb-
ler to produce a mixture of in-line instructions and subroutine calls.

The Assembly-language system consists of 3430 source lines, including all
macro definitions and full run-time support. Total effort to date is
approximately 6 man-months by professional programmers plus 2 student-
monthe., Included in this effort are 850 lines of modifications and ex-
tensions to P4, written in PASCAL, replacing and extending 300 lines of
the received compiler.

The implementor had previously been project manager for CDC FORTRAN '63,
supervised the development of several other compilers and written numerous
Cross-Asemblers and Simulators; although familiar with ALGOL he had no
previous knowledge of PASCAL.

The FORTRAN and EXTERN extensions permit access to FORTRAN libraries
{specifically NAG and IMSL) and to independantly compiled PASCAL proce-
dures and functions. All linkage is via our system linking loader, so
normal JCL suffices:

e.g. a) PASCAL (SOURCE)
EXAMPLE
compiles and executes the program EXAMPLE from the file SOURCE.

b) PASCAL (S1)

PASCAL (S2,BINARY1)

PASCAL (83,BINARY2)

FORTRAN (84,BINARY3)

LOADNAG , EXAMPLE

EXAMPLE
compiles 4 files and links their programs with binary and NAG routines and
executes the resultant load-module, EXAMPLE, which has the same name (in
this case) as the PROGRAM statement of the principal file.

No automatic text copying is supplied, however, various editors obviate
the need for this facility with COPY,DECK,COMDECK,COMMON and INCLUDE
commands .

A symbolic-dump-table option produces a symbolic file which is used by a

PASCAL~coded Post-Mortem dump procedure to produce a symbolic dump (one
new P-CODE instruction is produced for this purpose).

We have two Master's thesis projects developing transportable
optimization programs for global and peep-hole optimization. 1'll keep
you informed of their progress. We're also developing a Cross-compilation
support system to provide PASCAL capability to all the lab-computers
(Mini's and Micro's) connected to our major computer complex.

Sincerely,

cg"~,.“ /h (SR

William Silverman

P.S. 01% NY?1T to Kris and Elaine Frankowski and hello to Larry Liddiarad,
et al in the Computer Science Dept .

Intel 8085/8080 (Digital Marketing)

Ihl- compiler runs under CP/M and is & Pascal-P descendant. The price
s $350.

Digital Marketing
2679 Cherry Lane
Walnut Creek, CA 99459

LT# SNIN TVISVd

0861 “HIYVW

50T 9vd



0)

2)

4)

5)

6)

N

GAMMA TECHNOLOGY Pascal for Data General AQOS Systems

Implementation Checklist

DATE/VERSLON:
AOS Pascal Revision 2 - September 1979
Checklist date: November 16, 1979

IMPLEMENTOR/MAINTAINER:
Pete Goodeve

3012 Deakin Street
Berkeley, CA 94705

DISTRIBUTOR:

Gamma Technology, Inc.
2452 Embarcadero Way
Palo Alto, CA 94303
(415) 856-7421

TWX: 910-373-1296

MACHINE/SYSTEM CONFIGURATION: 3) SYSTEM CONFIGURATION:
Data General Eclipse and M600 Series A0S Rev 2.00 or later
Floating point hardware

DISTRIBUTION: $500 package comprises a 9-track, 800 bpli magnetic tape and
documentation (package price is $50 if it is an upgrade to a previously purchased
release-! system.

Tape is in A0S dump format, containing a complete eystem, documentation, and
sources. Included at no charge are some public domain Pascal utilities based on
those supplied by the University of Minnesota.

DOCUMENTATION: An instruction manual gives details of usage under AOS; a current
textbook should be referred to for knowledge of the Pascal language iteelf.

pifferences from the {(draft) standard (and from previous versions) are
deacribed in reference sections of the manual.

An AOS "HELP" file is supplied, and also documentatton for the utilities.

All documentation is also in machine-retrievable form.

An up-to-date 1list of bugs and notes will be maintajined.

MAINTENANCE POLICY: Bug reports (in writing) are encouraged; please send them to
the distributor (Gamma Technology). The system 18 expected to be stable; no
incremental upgrades are planned, but fixes will be distributed. Any future major
development will depend on demand.

STANDARD: The compiler is a considerably enhanced derivative of P-4 (christened
"p-5") with many major restrictions of the original removed.

Restrictions:
PACKED 1s ignored; PACK and UNPACK are not implemented.
DISPOSE 18 not implemented; heap management 18 by MARK and RELEASE.
Parameters may not be Procedural or Functional.
Subrange set constructors are not recognized.
There are reetrictions on READ and WRITE (but not on GET and PUT) for
files either passed as parameters or coded as non-text.
only four text files may be in use at one time (no restriction on
other types).

Enhancements over earlier versiuns (P-4):
Files may be of any type (except FILE).
Any (global level) files may be specified external in program header.
Full ASCII is supported; lower and upper case alphabetics are equiva-
lent identifiers. Braces may be used as comment delimiters.

8)

9)

10)

11)

String constants may be up to one line in length.
Format control of real output is as defined by the standard.
TEXT and MAXINT are predeclared.
GOTOs must be to a line within enclosing scope (standard Pascal).
Stack frame allocation is improved.
Language enhancements:
External procedures (Pascal or assembly code).
HALT {(or HALT(n)) abnormal termination feature.
Random access to all files.
AOS features:
Compile command options (selecting e.g. cross-reference listing,
binary only, syntax check only, etc.).
Max stack/heap space allocated can be specified at both compile
and execution time.
External files may be specified in execution command.

MEASUREMENTS : No real timing tests have yet been made, but compiler compiles
itself (on a quiet system) in 10 or 11 minutes.

The run-time interpreter occupies about 9 Kbytes. 1In addition to this, and the
space needed for the program’s P-code, a default of 4K bytes is allocated for run-
time stack and heap space; this can be increased or decreased by the user at

compile and/or run time -- the range is from 2K bytes up to the limits of the
machine.
RELIABILITY: Excellent, over the two months it has been running at the

development site. No Pascal program has yet managed to cause a system crash
(unlike other languages runing under AOS).

Revision 1 is now in use at abut 20 sites, with a good reliasbility record. A
few slight problems (mainly with stack overflow) found in that revision have been
fixed in the new omne.

DEVELOPMENT METHOD: This isa 8 fast P-code interpreter system. The compiler
generates an extended, machine-independent symbolic P-code, which 1ie then
translated and assembled into a compact binary form; this is bound with the
interpreter to create an executable program file. The aequence from source to
program file is managed automatically by a single user command.

This "P-5" compiler has been developed directly from the Lancaster version of
P-4. It should be completely transportable, except that it assumes the character
set is ASCII. Aside from its use of HALT(n), the compiler is written entirely in
standard Pascal. It was necessary, however, to split the compiler P-code into
overlay segments, so that large programs can be compiled (the overlay scheme 1is
not available to user programs).

The P-code translator is written in Pascal, and the run-time system in Eclipse
assembly language.

LIBRARY SUPPORT: Pascal cannot be linked to other languages for the Eclipse
(except assembly language), because each has its own stack format.
External procedure modules may be compliled separately and linked to a main
(Pascal) program. External procedures may also be written in assembly language.
One or two library procedures are supplied with the eystem (for example, for
extra file management functions), but no general library is envisaged aside from
the utilities already supplied.

LT# SMIN TYISYd

0861 "HIYVW

907 39vd



IMPLEMENTATION NOTES ONE PURPOSE COUPON

0. DATE

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. °)

2. MACHINE/SYSTEM CONFIGURATION (* Any known limits on the configuration or support software required, e.g.
operating system. *}

3. DISTRIBUTION (* who to ask. how it comes, in what options. and at what price. *)

4. DOCUMENTATION (* Whet is available and where. *)

5. MAINTENANCE /s it unmaintained, fully maintsined, etc? *)

6. STANDARD [* How does it measure up to standard Pascal? Is it a subset? Extended? How.")

7. MEASUREMENTS (* Of its speed or spsce. *)

8. RELIABILITY (* Any information sbout fieid use or sites instaled. *)

9. DEVELOPMENT METHOD (* How was it developed and what was it written in? *)

10. LIBRARY SUPPORT [ Any other support for compiler in the form of linkages to other languages, source Rbraries, etc. )



