PASCAL NEWSLETTER

May, 1974 Number 2

FROM THE EDITOR

The second newsletter marks the release of PASCAL 2 for CBC
CYBER 70 and 6000 series computers under the KRONOS or SCOPE operating
systems. Interested CDC users may place orders as explained in the
section PASCAL 6000 - 3.4. Also, implementations of PASCAL for other
machines have become known through recent correspondence. Further infor-
mation about these implementations can be obtained by writing directly
to the contact given with the description of each implementation..

Please note the following important points.

1) Dr. Wirth, the author of PASCAL, is negotiating with a pub-
lisher to print a paperback edition of, "A User Manual for PASCAL'" by
Jensen and Wirth. People who have received a preliminary version of
this manual should not make any further copies of it.

2) The University of Colorado has offered in the past a $10
discount on orders of PASCAL from previous recipients of the package.
The discount has been dropped since the new release of PASCAL is more
than merely a correction to prior versions. The extra money will he
used to defray the cost of this newsletter. o

3) A short history of the development of PASCAL is given' so
that references can be made to the origin of PASCAL compilers on non-
CDC computers.

4) A limited number of copies of the first:edition of the news-
letter are available on request from the editor.

Items of interest or requests for material can be mailed to
the editor:

George H. Richmond
University of Colorado
Computing Center

3645 Marine Street
Boulder, Colorado 80302

or phone: (303) 443-2211, ext. 6934.

HISTORY OF PASCAL

PASCAL is an ALGOL-1like programming language with data structure
facilities written by Dr. Niklaus Wirth at the Eidgenossische Technische
Hochschule (ETH) in Zurich, Switzerland. The original language defini-
tion was made in November, 1970, in '"The Programming Language PASCAL"
published by ETH and later in Acta Informatica 1, 35-63 (1971). The
last compiler of this version of PASCAL was released in August, 1972,

» In November, 1972, expefience gained with the original language
revealed certain details of the:- language that should be changed. This

was done with the publishing of, '"The Programming Language Pascal (Revised
Report)'" in November, "An Axiomatic Definition of the Programming Language
Pascal" in December, and the release of an updated compiler dated Decem-
ber, 1972. This compiler implemented all the specifications of the Re-
vised Report except for class variables which conformed to the definition

of the original report. L'LP/\CKED MVQ,‘?!EUJF\L%

Later, a preliminary version of the PASCAL-P compiler was developed
and released to a limited number of sites. Most of the.PASCAL compilers
.implemented for non-CDC machines are based on this compiler and are iden-
tical in the form of PASCAL compiled by the December, 1972 rclease for
CDC machines.

May, 1974, brings the release of a completely new PASCAL compiler
called PASCAL 2 for CDC machlnes DCtallb of the changes made .and a
descr1pt10n of the materials avalldble are given in the section, PASCAL
6000 - 3.4. i . |
- ~ Binally, the PASCAL-P compiler-'is being rewritten to bring it in
-11ne With standard PASCAL Thxs portable compiler is expected to be
available in July ‘ ,
{

,_PASCAL FOR NON-CDC MA(,HINES o B

o Several s1tes have 1mplemen;ed PASCAL c0mp11ers for computers
other than CDC 6000 series machines.. The machines represented are:the
CII IRIS 80, CII 10070, DEC System 10 -IBM 360/370, UNIVAC 1108, and
XDS SIGMA 7. For further 1nformat1on on these pro;ects, write the con-
tacts g1ven below

B

The CIT IRIS 80, CII 10070, and XDS SIGMA 7 share the same machine
language. Mr. Didier Thibault and Mr. P. Mancel have taken the December,
1972 PASCAL compiler for the CDC machine and bootstrapped it for the CII
IRIS: 80. This compiler is currently being tested under.gontrol of a
monltor written for the SIRIS 7 - SIRIS 8 operating system. It .generates
relocatable binary object code which can be linked by the general linkage
editor. It uses the character set ordering as defined by PASCAL on the
CDC computer. It allows procedures to be separately compiled and merged
at linkage time. It allows all file management compatible with the SIRIS
7 or SIRIS 8 operating system using the S.G.F. assisted file management
system distributed by the CII company. It accepts all features of the
PASCAL language except the. non-dynamic allocation of files.

The compiler consists of 4500 lines of PASCAL code running under
control of a monitor (assembly code). The PASCAL program consists of
.23,000 machine instructions, and the monitor 1000 machine instructions.
‘It requires 40,000 thirty- two bit. words to compile itself. To make this
~compiler avallablq on other operating systems, the monitor has to be

 .rewritten. This transposition would be easier if a file management

system is avallable on the target machine. o

' The bbdtstrap of this compiler was done using the CII IRIS 80
.and a CDC machine in parallel. A simulator was not ysed. It took two
’exper;enqed programmers 14 man months to complete.

This compiler is currently being tested prior to its distribution.
People interested in receiving documentation can place their names on a
mailing list by writing:
S.F.E.R./PASCAL

IRIA 15-02
B.P. 5 78150 Le Chesnay
France

Address other correspondence to:

Mr. D. Thibault
17 rue Mayet
75006 Paris
France

The DEC System 10 implementation of PASCAL was developed at the
Un1ver51ty of Hamburg, Germany by Professor H. -H. Nagel. Work began
in April, 1973 with receipt of the preliminary PASCAL-P compiler from
ETH. By November, this version would compile itself. As of April, 1974,
everything mentioned in the revised PASCAL report of July, 1973, ‘including
I/0 formats, is implemented with the exception of procedures and functions
as formal arguments, arithmetic procedures (SIN, COS, EXP, LN, ARCTAN,
ROUND), and GO TO leaving a procedure body (the GO TO EXIT). Work on
these areas is in progress.

In particular, the following goals have been reached. The com-
piler generates in one pass immediately executable (no loader run) re-
entrant code, generating a sharable pure part and a separate LOW-file
containing data. A new feature, INITPROCEDURE, has been implemented
to initialize global variables. I/0 is possible to standard as well as
to declared files. Files may be declared only as global variables. A
standard file named TTY is introduced to allow communication with the
" user terminal. An optional file name may be given in READ/WRITE to use
the formatting capabilities of these procedures for all files of CHAR.
The actual file name may be indicated at execution time by an optional
argument to RESET or REWRITE. The printable upper case ASCII character
set is used as internal representation of characters. The appropriate
procedures and attributes like READLN(f), WRITELN(f), EOLN(f), etc.
have all been implemented. DEC line numbers are recognized, stored, and
accessible with a special new procedure GETLINENR. Indexed access to
PACKED ARRAY has been implemented. Constant indices are evaluated at
compile time. To obtain a completely self-sufficient compiler, the re-
entrant runtime support is copied out of ‘the compiler into the user's
object code file.

A preliminary version of this compiler has already been sent to
several sites in the United States (Professor Terry Beyer at the Univer-
site of Oregon, Dr. Donald I. Good at the University of Southern California,
and Dr. Frederlck A. Hosch at Louisiana State Un1ver51ty) A bug contest
has revealed several critical and about twelve minor errors in this ver-
sion which have been corrected in the meantime. The compiler is currently
being used in teaching undergraduate students and in small research pro-
jects. For further information write:

Professor H. -H. Nagel

Universitat Hamburg

Institut fur Informatik

2 Hamburg 13, Schluterstrasse 06-72
Germany

Two sites are working on PASCAL implementations for IBM 360 and
370 series machines. Mr. Robert S. Deverill and Mr. Alfred €. Hartmann
at the California Justitute of Technology have a running version of the
preliminary PASCAL-P compiler which will be ready soon. Also, Mr. J. M
Wells and Mr. W. Bruce Foulkes at the University of Manitoba arce working
on a PASCAL compiler for IBM machines which should be ready soon.

Caltech's version of PASCAL is implemented on an IBM 170/158
running under the 0S/VS2 operating system. The environment will operate
under any version of the 0S operating system. About 270 kilobytes of
memory are required to compile the compiler. The compiler uses the Te-
cursive déscent parsing technique to compile PASCAL programs in a single
pass. Only two files, a standard input and output file, are implemented
in this version. File declarations are unimplemented, as are cxit labels,
formal parameter procedures and functions, and the standard functions
“"succ" and ''pred." . P

It

For further information write:

Mr. Alfred C. Hartmann

California Institute of Technology
.Information Science 286-60 '
Rasadena, California 91109

The PASCAL compiler at the University of Manitoba had it genesis
in 1971 at ETH in Zurich, Switzerland. An early paper, "A Pascal Com-
piler for the IBM 360/370 Computers,' was presented. last fall at the
Third Manitoba Conference on Numerical Mathematics; reprints should be
available by now. The first object programs should be running soon and
detailed documentation will be available later this year. For further
information write: -

Professor J. M. Wells
University of Manitoba -
’ 3 Department of Computer Science
R : Winnipeg, Canada R3T 2N2

The Univac 1108 implementation of PASCAL was done at the Techni-
cal University of Norway by Professor Tore Amble and two of his degree
students, Mr. Terje Molster and Mr. Vernar Sundvor. The compiler is
based on the preliminary version of the PASCAL-P compiler. All code
generated is in the form of subroutine calls, so efficiency of compiled
programs is not very high. Packed records, packed arrays, files (except
for standard files), formal procecares, and formal functions were not

‘implemented. For further information write:
IRt caRI -y . .

Professor Tore Amble

Computing Centre

Technical University of Norway
Department of SIN TEF

N-7034 Trondheim-NTH

Norway

PALCAL LUUU-5 .4

by N. Wirth

An entirely new compiler for the CGC wuud series of cormputers
has been under development at ETH Zurichh Tor the last 10 maonths.,
Az predicted last fall and arnnpunced in the first issue ol the
NEWHLETTER , it is released in May 1v/4. An important development
is the definition of & Qtandard 2ALLNL: in the interest of
portabhility of 3arograms, W e wist to make A clear distinction
hetween Pascal and Pascal-like languaogrs, as ssveral of thesc
haove already been proposed, The new caompiler adreres to this
Standard, and includes some additional facilities clearly
labelled as extepsigrs (3.9-=3.0), This Jtandard also includes
the definition of a program representation in terms of the ALCII

charagcter sct.

The new compiler is designed for use under the CDC LUCGPE 3.4
operating system with its td-character set, The decision to
adapt PASCAL to the AGCII set and to character sets without
explicit control characters has made necessary some changes 1in
the definition of the language. Gf particular importance is the
decision to eliminate the ggl character. It was felt that this
change 1is in the . interest of making Pascal less dependent on
particular character sets and actual representations of
textfiles.

A summary of the changes and innovations of Pascal olUul=3.4
campared to Pascal 6UUU~3.< is presented below in an informal,
descriptive style. It is divided intc the following parts:

-

Notation (representation, character sets)

Differences between Pascal 6UUU-3,4 and Pascal oluU-3.2
New facilities of Pascal o6uLUU-3.4

New predefined procedures and functions

Control statements {8COPE 3.4)

U8 UL N -
.

The new compiler generates relocatable binary code that can be
loaded by the standard loader of the operating system. Before
execution, the generated code must be linked by the loader with
a set of subroutines for input/output handling. Each program
operates on files that are declared as formal parameters in its
heading, and are substituted with actual files that can be
specified in the EXECUTE statement of the contrel statement
record.

Besides saome new features, the major advantage of the new
compiler is its improved code which makes campiled programs more
efficient and more compact. The price for the expanded
capabhilities is a 1larger size of the compiler: for average
programs, a field length of 6000U {(octal) is needed.

The Pascal 6U0U0-3.4 compiler can be ordered from

s . athleen dJderos
Institut fur Infuoresii-
Clausiusstr. 55

8006 Zurich
Switzerland

The charge for a minitape, tape handling, postage, and
documentation is OFr, VI if a tape is sunplied by the
requestor, the charge is GFr, /9. {(Please send minitapes anly!)

In the UJSA and Canada ., orders must be directed to

Mr. George H, Richmond
University of Coloraco
computing Center

3645 Marine Strect
Boulder, Colaorado o©ujué
USA

The charge for a minitape, tape handling, postage (North American continent),

and documentation is $30; if a tape is supplied by the requestor, the charge
is $20.

The system is available in two versions, namely For‘use with the
ASCII character set (CDC-defined collating sequence) or with the
CDC scientific character set. When ordering., please specify

PASCAL 6000-3.4 ASCII or
PASCAL 60UU0-3.4 CDC

Along wich the system, the following documentation is provided:

' A User-Manual. (copying probibited, as we are currently in
contact with a publisher who might possibly bhe able to
provide this manual alaong with the Revised Report in a
moderately priced paperback edition.)

2. A description of the contents of the tape with instructions

on how to install the Pascal system.

Note: the system also runs under GCOPE 3.2, 3.3, and 3.4 with
the 63-character set, with the only restriction being that the %
character cannot be used.

1. Notatign

1.1 Set wuniomn is denoted by + and st intersection by *
(instead of ~ and ~). :

1.¢

The symbols in the left-hand column may Le subsbtituten tor
those in the right-hand column,

until now new
- ngk
~ ang
s Qr
P4 <>
L > =

{ and |

Note ~ and v dencote Ooclean operations and cannot be usod
for set operations.

[

context -indegoendint

-

The abiove tahbhle defines a unigue,

correspondence hetween those Pascrl symbals which are not

available 1in the international standsrd of ISG (AGDIT)Y) and

the ASGCII character set. Hence therw is a stanidard
[T

representation for a Pascal program in the ASCII character
set .

2. Q_}fﬁﬁnﬁﬂﬁg_ﬁ. Diﬂtﬁiei"ﬂ PAGCAL olUUU—-3,.4 ond BASCAL 0000-3.¢

P |

End of lines in textfiles

The control character ggl. which marked the end of a line,
has been eliminated. Instead the folliowing textfile
gperators are able to recogrize and generate 1ine endings:

!

eoln(f) a predicate function, evaluated while reading a
textfile, which indicates b2t~ “he end of the
current line in the textfile f has been reached.
Suppose the buffer variabhle ft is pasitioned at
the character x and that the procedure “get{f)”
{or “reed”) is called in order to access the
next character. 1f x had been the last character
in the line, then f+ = " ° [(blank}, and the

value of eoln{f) = true. The next call of get (f)

(or read) accesses the first cliaracter of the

next line, and eoln{(f) = false {(provided the

next line is not empty).

writeln(f) a standard procedure thet terminates the current
line when writing the textfile f.

readln(f) a standard procecdrue that skips to the beaginning
of the next line; the huffer variahle f1 is
equal to the first character of the new line.

The wusual program schema for scguential reading of a
textfile f follows: (x dis @ wvariahle of tyne chiar; P
denotes the processing of the {next) character.)

P . reset(f);
“ ahila —~eof (f) da
beain beginline:
while -eoln(f) do
bhegin
read(f .x): {read from the textfile f and
assign to x; see section 3,1}

P(x)
f end:
‘ endline; readln(f)
eqad

A line endinn is represented by a blank, Notice that the
following schema can be used when it is not necessary to
recognize line endings--i.e. when no special action is
required upan encountering an end of a line:

reset (f);

while -~eof(f) da
beain read(f.x): P(x)
end

The following ahbreviétions may be used:

'

abbreviated form expanded form

writeln(f,x1, ... ,xn) lhegin : '
write(f x1,....xn); writeln(f)
r o end

readln(f ,x1, ...,xn) hegin
read(f ,x1,....xn);: readln(f)
end

Ngte: The first parameter names the relevant textfile (see
‘section 3.1):; when it is pot of type text, then.the file
“"input” is assumed by reading and the file “output” by
writing., Hence, :

writeln stands far writeln(output)
and)
readln stands for readln(input)

2.2 The préﬁf&m heading

PASCAL 60UU-3.4 requires the specification of a program
heading. The form is:

erogram p(x1,x2, ... ,xn):

, where p 1is the name of the program and x1,..xn are formal

! file parameters (n=1). x1...xn are available to the
program, but also exist ocutside of the program; hencé, they
are called gxteraal files (as opposed to local files),

3

‘intended. Note that *hHe file specif

The L. oGram name heon om o . RIS . . wram, but can
be used

4 N

in the curtrd’ Lol S -
CXECUTE p (F 1 ces LERY

where f1...fn are file nemes, i.e., the actual parameters

corresponcding to the formal parameters x1...xn.
The followin”, rulus ©oL.:

QG s ST S B rual contaia e formal parameter

»
-

e

i

) As with NI Loy AT iat e

P

. s denated by the
names X f...xn must e deciered a3 Tile variables in the
main program. The =2xcection oocurs witnh the files
"input” and “outsut” wnich are automatically oredeclared
as

VAar 1nput ,cuiput i text;

c¢) If any actual parameter fi in tne ExFG*TC statement is
left empty, the corresporaias formal carameter x1 in the
progcram rneading i3 then azsuaet as the actual Tlogical
file name .

d} Only oane ' L011Lal rocourd” will he read from the actual
file INPU T«-J.e . the next £EOX mark appenars as EOF in a
Pascal program,

e) If a file xi"is to hm cpened far reading only, then this
must he indicated by &n wsterizk following the file
parameter in the n~ogra+q heacinn. {This is necessary, if

)

actual files are eraens.. L FLilon with Sead Permission
only .)

Note: Rules a)--e) are specificly for the CoC
implementation. A chanansuznce Storoele c) is that a program
with a program rheading:
‘Qggéga& standard (Lnput ,ustaut g
ran be called simply =ith Tho contro? statement:
EXECUTE ,STANDARD .
or even
EXECUTE .

shen the standard GUUPE §Filee SINPUT and OUTPUT are
icati

\N
cations [IN] and [0OUT]
of PASCAL 60U0-3.2 are eliminated,

The label declarstion part

Every label must be declared. Consequently, the symbol gxit
is eliminated from the agg stateme~ts. If a label L (an

~10-

e —

ne

unsigned intener) marks a statement in the statement part
of a block A then L must be declared in the lahel

declaration part of A,

Coto statements should be avoided whenever possible,
thereby making the caomputational structure of the sroaram
mare transparent., Jumps from outside of » structured
statement inta that statement are gl allaowed.

The standard type "alfa’

Due to the introduction of packed arrays (see section 3.<),
the standard type alfa can be explicitly reclared as

Lype alfa = packed arrayl1..10] gf char;

Alfa values must, therefaore, conmply with the rules for
packed arrays. In particular, assignments can be made only
butween identical types. That is, an assignment to an alfa
variatle a

a := <character string>

is only allowed when the character strincg has exactly 1U
characters. ‘ 3 P '

Likewise, alfa may no longer he regarded as a scalar type.
Consequently, a result tyoe of a function cannot be of type

~alfa, nor can the argument of the function grd.

Pointer types and class variables
The concept of a class variable is eliminated. Instead of

type pointer = fclassvariable;
var classvariable: glass gf T

is now simply
Lype pointer = 1T
Apart from this, the facilities for pointer handling remain

the same. The modification affects only the declaration
part.

"The value part

'PASCAL 60U0U-3.4 has no value part as did PASCAL 60006-3.2.

(A more general substitute facility is under
consideration.) :

-11~

3. New facilities of PASTAL oUUU-35.4

3.1

Read and Write

The standard procedures read and write can apply to apy
textfile, not Just to the files "input”™ and “outout™. The
first parameter names the textfile; when it is nat a file
variable, then the file “input” is assumecd by read and the
file “output” by write. For example,

write(x .,y) stands for write{output , x,y)

{Alsa see section <.1 for readln and writeln.)

Packed arrays

The symbol pagked before the symbel Lriryy weans that the
storage reguirements for the Array structure should be
minimized. It has no other influence on the mcaning of the
program. One should keep in mind that accessing an element
of a packed aArray can take more time than accessing one
from an unpacked array. However, the gain in storage can be
very great {(up tp a fRrctor of ouU in the case of a Boolean
array). For example, the varialile x

x: packed array L1..n] gf U..99Y

requires 0 times lgss storage than the same variable would
were it pot packed (or if the component type had been
specified as “integer”). The reason is that a number
between U and 999 can be expressed with 10 hinary digits:
hence, 0 such numhers can be stored in one 6U-bit word,

The packed array is especially important in connection with
character strings, where egach group of 10 6-hit characters
are packed into one word. The standard tyoe "alfa” is a
special case of a string (see 2.4): an alfa value fits
exactly into one word.

A restriction common to all packed structures is that no
component of such a structure {(e.g. an element of a nacked
array) may appear as an actual parameter when the
corresponding formal parameter 1is specified as a yar
parameter (variable parameter). .

Record types with a variant part but without a tag field

Obligatory in PASCAL 60UD-3.2 1is the presence of a tag
field when a record type has a variant part. For example,
the tag field x was necessary in the following declaration.
R: record a: T1;
case x: sex qof
male: (bm: T<);
female: (bf: T3)
gnd

In PAROGAL LU= o the tay ficld x pay be oritted, theroby
simplifying the above case=-~clause to:

case sex gf

{(where "sex” is a nrogrammer-~-defincd type identifier). The
advantage is that i then requires less storace; the
disadvantare is that it is impossitile to establish fraom the
value of B alone which variant is present. (g.a0. one can no
lonper ask: "if 8 .x=malc then &) Therefore, one should use
this new flexihility gnly with the greatest of care.

Values af type set

Given is a scalar type % with the values wl,we, ... ,wn. The
set m = [wi,w(i+1).,w(j=1).wj] can be more simply
expressed with the notation:

m o= [wi.,wj]

where wi and wj are arbitrary expressions of type W, and m
is a variable of type ggft of V. '

External procedures and functions

In PAULCAL 6UUU-3,4 it is possible to call external,
separately compiled procedures and functions. One needs
only to introduce the name of the proced {function) by a
pseudo-declaration in the program ? This enables
Pascal programmers to build and access P qgram libhraries.,
The wuser 1is haowever cautioned to use greai care. for the
compiler no longer has the opportunity to check the
correspondence between actual and formal parameters. A
seperate write-up documenting this facility 1is in
preparation. Note that external procedures and functions
are not a facility of Standard Pascal..

Segmented files

The COC operating system allows a file to be subdivided
into segments of varying lengths, where each segment is a
“logical record” in CDC SCOPE terminology. In PASCAL
6000-3,4 these divisions are transparent when the file is
declared as sgamented. Example:

¥ar f: seamented file aof T

A number of operations are available to end a segment when

generating a file, and to recognize segments and their
boundaries when reading a file--regardless of the component
type.

putseg(f) completes the generation of the current segment
when writing the file f.

eos (f) is a Boolean function indicating whether the gnd

-13~

af a segment has been reachod while reacing i

file f. Assume that the buffur variable f! = x
(of type T), and that “get{f}” is called. If x
was not the last element of the segment, £t is
the value of the next element. If x was the last
element of the segment, eas(f) is “"true” and the
value of f} is undefined.

getseg(f) initiates the reading of the next segment of the
file f. f1 is tle first element of the {(new)
segment. 1If there is no next segment, "eof{f)”
is “true”.

The follaowinn program gschema illustrates the sequential
reading of a segmented file f:

reset (f);
while —eof (f) da
beaing beaginsegment
while —eos(f) da
begain

R(fFt): get(f)
end: ‘ N
endsegment ! getseqg(f)
end N b

An advantage with segmented files i3 the paossibliity of
positiaoning the reading and writing head (relntively)
quickly to any segemnt 1in the file. For the purposes aof
reading and (relwriting a segmented file., the standard
procedures getseqg and rewrite are extended to accept two
arguments .,

getseg (f ,n) initiates the reading of the: nth seagment
counting from the gurreat position of the
file. n>0 dimplies counting segments in the
forward direction; n<U means counting them
backwards ; and n=U indicates the current
segment . Note: getseg(f,1) is equivalent to
getseg (f).

rewrite(f.n) initiates the (relwriting of f at the
beginning of the nth segment counting from
the current position. Note: rewrite(f,1) is
pnot eguivalent to rewrite(f). The 1latter
causes initiation of {(relwriting at the very
beginning of the entire file.

Since files are organized for sequential (forward)
processing, one stiould not expect getseg and rewrite to be
as efficient for n<=0 as they are for n>0.

Observe the following rules:

1) eof (f) always implies eas(f).
2) get(f) is applicable only when eos(f)
3) put(f) is applicable only when eos(f)

i

false.
true.

(i

-14-

getseg (f) is applicable anly whuen euo! (i) = Jaiow.

The procedures putsea(f), <cetsea(f), rewrite(f.,n) and
the function eos(f) can anly be applied to senmented
files.

! ‘ o) Seamented filcs are not sart of utandard Prscal; thoy
5 are an extension ta the lanquaae and oriented towards
the CDC operating system.

(S

“. New Predefined Procedures and Functiogns

4,1 Procedures

readln(x1, ... ,xn) see <.
writeln(x1,xn)

cetseg(f), getoos /T,

rutseg(f) see 3,0
rewrite (f n)

linelimit (f,n) causcs the oprogram to terminate when the
textfile f has more thanm n lines. Note: the
call “"linelimit (outout , 10U00)" is
“automdtically executed at the beainning of
a pragram,

pace(f) causes a Jjump to a new paade when the
textfile f is beinc printed, ’

halt terminates the execution of the program and
issues a post-mortem dump.

messade (3) writes the string s into the 'dayfile.

time(a) assignes to the alfa variable a the current
time in the form: ' hh.mm.ss.’

date(a) assignes to the alfa variahle a the current
tdate ., ’
dispose(p) informs the memory management that the

variable referenced through the pointer p
will no longer Le needed. “dispose(p)” is
in a certain sense the inverse of" "new(p)".

4.2 Functions

eoln(f) see 2.1
eos (f) ' © see 3.6
card(S) equals the cardinality of the set S (i.e. the

number of elements contained in the set S).

undefined(x) is a Boolean function. Its value is true when
the wvalue x {(of type real) is "iafinite” or
"indefinite” (see CDC Manual). These values
arise 1in the cases of overflow and division

-15-

Ly zero.

expo (x) iz an integer function yielding the exponent
of the floating—point representation of the
ranl arqument x .,

clock is a function without any parameters. It
gives tre current nrocoassing time in

milliscoconds.

aote: getsen, autseg, linelimit, halt, messane, time, dote,

eos , card, uncefined, expu, and cleock are pgb Standard
Pascal, hut represent additional fentures of tho CEC
implementation, lignce, they must e avoided in oroaramc

that are sunposed to be poartatle.

5, Lontrol skatements

In installations which keep the PAGCAL system stored as a
Permanent File, the compiler is usesd through the following
cantrol statements. '

ATTACH ,COMP, ... S
comp ., o "
ATTACH LID, ...

LOAD ,LGO ,LIB.

EXECUTE .,
T he additional information needed to complete the ATTACH
statements must be supplied by the individual computer

installations which make PASCAL available. The instruction COMP
calls the compiler and can be provided with parameters as
follows:

COMP (X Y .2)

X = sgurce pragram (default = INPUT)
y = listing (default = OQUTPUT)
z = hinary code {(default = LGO)

The instruction EXECUTEL initiates the execution of the PASCAL
program, which wmay call any subroutine in LIB., It has the
general form:

EXECUTE p(f1,fn)
where p is either empty or the name of the program given in the
program heading. f1...fn are the actual external files (see

2.2).

A Standard Pascal job has the following parts:

-16-

.
S —

control statements

end of
PASCAL
end of
data

end of

recaord
program
record

file

(7/0/9)
2/l

(
(= file INPUT)
(6/7/6/9)

-17~

PASCAL and Portability : N, Sirth

Due to the interest expressed by several people to make Pascal
available on other computers, the Pascal-P system was developed
by U., Ammann as a side-product of the 6UUU-3,.4 compiler praject.
Its. purpose was to provide with minimal effort the means to
transport Pascal to other systems with alsoc minimal effor: an
the part of the receiver. This resulted in the-Pascai-P compiler
which generates code for a hypothetical stack computer M. This
computer is described as a short Pascal orogram that represents
an interpreter. It 1is combined with a loader that loads the
generated code, which is a string of printing characters (i.e. a
text). The only effort on the part of a receiver of this system
is then to code the loader/interpreter in an efficient manner on
his available computer. Of course, the system obtained in this
way 1is interpretive and inherently slow; however, for short
programs its speed proved to be gquite acceptable.

Currently, the Pascal-P cgmpiler is being modified in order to
1. comply with Standard PAGCAL,
2. overcome some shortcomings of the present version,
3. be expressed entirely in terms of ASCII characters.

The new Pascal-P compiler is planned to be available in July 74,
together with documentation. It processes (standard) Pascal with
a few restrictions’ (e.g. no packed structures, no formnl
procedures and functions, no file declaratians).

The Pascal-P approach is qguite adequate and convenient, if
efficiency of program execution 1is of no great significance.
However, if the development of a high-quality compiler is the
ob jective, a bootstrapping process on the basis of an
interpretive Pascal-P system 1is wvery costly, and involves a
large amount of reprogramming. It 1is clear that a different
approach to the transportation of compilers themselves should be
investigated.

A project has now been started with the aim to construct a
machine-independent Pascal compiler which can be extended
(completed) into a high-quality compiler for almost any real
computer with a reasonable amount of additional effort. The
system is developed by H Jdl. Nageli at LTH Zurich, with
cooperation from Cambridge University (England), where the
product will be subjected to its first test, namely its
adaptation to the I8BM System/360.

~18-

ADDRESS CORRECTIONS

Please help us keep our mailing list up to date by mailing this
page back if your address is incorrect or you are no longer interested
in PASCAL. Additional names of interested parties are welcome also.

.DTOP my name. Correct address as indicated.

" Add the following names.

Mr. George H. Richmond
University of Colorado
Computing Center

3645 Marine Street
Boulder, Colorado 80302
U.S.A.

C-19-

