Eidgenossische

Berichte der

Technische Fachgruppe
Hochschule Computer-
Zurich Wissenschaften
Niklaus Wirth
The Programming
Language Pascal
November 1970 7/

Niklaus Wirth

The Programming
Language Pascal

Abstract

A programming language called Pascal is described which was
developed on the basis of Algol 60. Compared to Algol 60, its
range of applicability is considerably increased due to a variety
of data structuring facilities. In view of its intended usage
both as a convenient basis to teach programming and as an efficient
tool to write large programs, emphasis was placed on keeping the
number of fundamental concepts reasonably small, on a simple and
systematic language structure, and on efficient implementability.

A one-pass compiler has been constructed for the CDC 6000 computer

family; it is expressed entirely in terms of Pascal itself.

Second Edition: July 1971
Price Sk 6.00

(submitted for publication in ACTA INFORMATICA)

Contents

1.

10.

1.

12.
13.
14.
15.
16.

17.

Introduction

Summary of the language

Notation, terminology, and vocabulary
Identifiers and numbers

Constant definitions

Data type definitions

6.1. Scalar types

6.2. Structured types

Declarations and denotations of variables
7T.1. Entire variables

7.2, Component variables

Expressions

8.1. Operators

B8.2. Function designators

Statements

9.1. Simple statements

9.2. Structured statements

Procedure declarations
10.1. Standard procedures

Function declarations
11.1. Standard functions

Programs

SyntaxAdiagrams

Pascal 6000

How to use the Pascal 6000 System
Glossary

References

10
11
11
12
14
18
19
20
22
23
25
26
26
29

35
38

40
42

43
44
47
31
56

58

1. Introduction

The development of the language Pascal is based on two
principal aims. The first is to make available a language
suitable to teach programming as a systematic discipline based
on certain fundamental concepts clearly and naturally reflected
by the language. The second is to develop implementations of
this language which are both reliable and efficient on presently
available computers, dispelling the commonly accepted notion that
useful languages must be either slow to compile or slow to execute,
and the belief that any nontrivial system is bound to contain

mistakes forever.

The desire for a new language for the purpose of teaching
praogramming is due to my deep dissatisfaction with the presently
used major languages whose features and constructs too often
cannot be explained logically and convincingly and which too often
represent an insult to minds trained in systematic reasoning.
Along with this dissatisfaction goes my conviction that the lan-
guage in which the student is taught to express his ideas profound-
ly influences his habits of tought and invention, and that the
disorder governing these languages directly imposes itself onto
the programming style of the students. I am inclined to think
that the lack of discipline and structure in professional program-
ming style is the major reason for the present appalling lack of

reliability of practically all larger software products.

There is of course plenty of reason to be cautious with the
introduction of yet another programming language, and the objec-
tion against teaching programming in a language which is not
widely used and accepted has undoubtedly some justification -
at least based Dn.short-term commercial reasoning. However, the
choice of a language for teaching based on its widespread accep-

tance and availability, together with the fact that the language

most widely taught is thereafter going to be the one most
widely used, forms the safest recipe for stagnation in a
subject of such profound paedagogical influence. I consider
it therefore well worth-while to make an effort to break this

vicious circle.

0f course a new language shas ld not be developed just for
the sake of novelty; existing languages should be used as a
basis for development wherever they meet the criteria mentioned
and do not impede a systematic structure. In that sense Algol 60
was used as a basis for Pascal, since it meets the demands with
respect to teaching to a much higher degree than any other standard
language. Thus the principles of structuring, and in fact the
form of expressions, are copied from Algol 60. It was, however, not
deemed appropriate to adopt Algol 60 as a subset of Pascal; certain
construction principles, particularly those of declarations, would
have been incompatible with those allowing a natural and convenient
representation of the additional features of Pascal. However, con-
version of Algol 60 programs to Pascal can be considered as a negli-
gible effort of transcription, particularly if they do not involve

name parameters.

The main extensions relative to Algol 60 lie in the domain of
data structuring facilities, since their lack in Algol 60 was con-
sidered as the prime cause for its relatively narrow range of appli-
cability. The introduction of record and file structures should make
it possible to solve commercial type problems with Pascal, or at
least to employ it successfully to demonstrate such problems in a
programming course. This should be a help in erasing the mystical
belief in the segregation between scientific and commercial program-
ming methods. A first step in extending the data definition facili-
ties of Algol 60 was undertaken in an effort to define a successor
to Algol in 1965 [1].

Pascal has been implemented on the CDC 6000 computers. The
compiler is written in Pascal itself as an efficient one-pass system.
The "dialect" processed by this implementation is described by a
few amendments to the general description of Pascal. They are in-
cluded here as a separate chapter to demonstrate the brevity of a
manual necessary to characterise a particular implementation. More-
over, they show how facilities are introduced into this high-level,
machine independent programming language, which permit the programmer

to take advantage of the characteristics of a particular machine,

2. Summary of the language

An algorithm or computer program consists of two essential
parts, a description of actions which are to be performed, and
a description of the data, which are manipulated by these
actions. Actions are described in Pascal by so-called statements,

and data are described by so-called declarations and definitions.

The data are represented by values of yariables. Every
variable occuring in a statement must be introduced by a yariable
declaration which associates an identifier and a data type with
that variable. The data type essentially defines the set of values
which may be assumed by that variable. A data type may in Pascal
be either directly described in the variable declaration, or it
may be referenced by a type identifier, in which case this iden-

tifier must be described by an explicit type definition.

The basic data types are the scalaxr types. Their definition
indicates an ordered set of values, i.e. introduces an identifier
as a constant standing for each value in the set. Apart from the
definable scalar types, there exist in Pascal four standard
scalar types, whose values are not denoted by identifiers, but
instead by numbers and quotations respectively, which are syntacti-

cally distinct from identifiers. These types are: integer, real

—4 -

char, and glfa.

The set of values of type char is the character set available
on the printers of a particular installation. Alfa type values
consist of sequences of characters whose length again is implemen-
tation dependent, i.e. is the number of characters packed per
word., Individual characters are not directly accessible, but
alfa quantities can be unpacked into a character array (and

vice-versa) by a standard procedure.

A scalar type may also be defined as a gubrange of another
scalar type by indicating the smallest and the largest value of

the subrange.

Structured types are defined by describing the types of their

components and by indicating a structuring method. The various

structuring methods differ in the selection mechanism serving

to select the components of a variable of the structured type.
In Pascal, there are five structuring methods available: array
structure, record structure, powerset structure, file structure,

and class structure.

In an array structure, all components are of the same type.
A component is selected by an array selector, or computable
index, whose type is indicated in the array type definition and
which must be scalar. It is usually a programmer-defined scalar
type, or a subrange of the type integer. Given a value of the
index type, an array selector yields a value of the component
type. Every array variable can therefore be regarded as a
mapping of the index type onto the component type. The time
needed for a selection does not depend on the value of the selec-
tor (index). The array structure is therefore called a random-

access structure.

In a record strycture, the components (called fields) are
not necessarily of the same type. In order that the type of a
selected component be evident from the program text (without
executing the prggram), a record selector does not contain a
computable value, but instead consists of an identifier uniquely
denoting the component to be selected. These component identifiers
are defined in the record type definition. Again, the time needed
to access a selected component does not depend on the selector,
and the record structure is therefore also a random-access struc-

ture.

A record type may be specified as consisting of several
variants. This implies that different variables, although said
to be of the same type, may assume structures which differ in
a certain manner. The difference may consist of a different
number and different types of components. The variant which is
assumed by the current value of a record variable is indicated
by a component field which is common to all variants and is
called the tag field. Usually, the part common to all variants

will consist of several components, including the tag field.

A powerset structure defines a set of values which is the

powerset of its base type, i.e. the set of all subsets of values
of the base type. The base type must be a scalar type, and will
usually be a programmer-defined scalar type or a subrange of the

type integer.

A file structure is a sequence of components of the same

type. A natural ordering of the components is defined through
the sequence. At any instance, only one component is directly
accessible. The other components are made accessible through

execution of standard file positioning procedures. A file is

at any time in one of the three modes called input, output,

and neutral.

According to the mode, a file can be read sequentially, or it
can be written by appending components to the existing sequence
of components. File positioning procedures may influence the
mode. The file type definition does not determine the number
of components, and this number is variable during execution of

the program.

The glass structure defines a class of components of the
same type whose number may alter during execution of a program.
Each declaration of a variable with class structure introduces
a set of variables of the component type. The set is initially
empty. Every activation of the standard procedure gllogc (with
the class as implied parameter) will generate (or allocate) a
new component variable in the class and yield a value through
which this new component variable may be accessed. This value
is called a pointer, and may be assigned to variables of type
pointer. Every pointer variable, however, is through its decla-
ration bound to a fixed class variable, and because of this
binding may only assume values pointing to components of that
class. There exists a pointer value nil which points to no com-
ponent whatsoever, and may be assumed by any pointer variable
irrespective of its binding. Through the use of class structures
it is possible to construct data corresponding to any finite
graph with pointers representing edges and component variables

representing nodes.

The most fundamental statement is the gssignment statement.
It specifies that a newly computed value be assigned to a variable
(or component of a variable). The value is obtained by evalua-
ting an expression. Expressions consist of variables, constants,
sets, operators and functiors operating on the denoted quanti-
ties and producing new values. Variables, constants, and func-
tions are either declared in the program or are standard enti-

ties. Pascal defines a fixed set of operators, each of which

can be regarded as describing a mapping from the operand type
into the result type. The set of operators is subdivided into

groups of

1. arithmetic operators of addition, subtraction, sign inversion,

multiplication, division, and computing the remainder.

The operand and result types are the types integer
and real, or subrange types of integer.

2. Boolean operators of negation, union (or), and conjunction
(and). The operand and result types are Boolean (which is

a standard type).

J. get operators of union, intersection, and set difference.

The operands and results are of any powerset type.

4. relational operators of equality, inequality, ordering and

set membership. The result of relational operations is aof
type Boolean. Any two operands may be compared for equali-
ty as long as they are of the same type. The ordering re-

lations apply only to scalar types.

The assignment statement is a so-called simple statement, since

it does not contain any other statement within itself. Another

kind of simple statement is the procedure statement, which

causes the execution of the designated procedure (see below).
Simple statements are the components or building blocks of

structured statements, which specify sequential, selective, or

repeated execution of their components. Sequential execution

of statements is specified by the compound statement, conditional

or selective execution by the if statement and the case statement,

and repeated execution by the repeat statement, the while state-

ment, and the for statement. The if statement serves to make

the execution of a statement dependent on the value of a Boolean

expression, and the case statement allows for the selection
among many statements according to the value of a selector.
The for statement is used when the number of iterations is

known beforehand, and the repeat and while statements are used

otherwise.

A statement can be given a name (identifier), and be
referenced through that identifier. The statement is then
called a procedure, and its declaration a procedure declaration.
Such a declaration may additionally contain a set of variable
declarations, type definitions and further procedure declara-
tions. The variables, types and procedures thus defined can
be referenced only within the procedure itself, and are there-
fore called local to the procedure. Their identifiers have
significance only within the program text which constitutes the
procedure declaration and which is called the scope of these
identifiers. Since procedures may be declared local to other
procedures, scopes may be nested. Entities which are defined
or declared in the main program, i.e. not local to some proce-

dure, are called global.

A procedure may have a fixed number of parameters,
each of which is within the procedure denoted by an identifier
called the formal parameter. Upon an activitation of the pro-
cedure statement, an actual quantity has to be indicated for
each parameter which can be referenced from within the proce-
dure through the formal parameter. This quantity is called
the actual parameter. Parameters can be variable parameters,
procedure parameters, or function parameters. In the case of
a variable parameter, its type has to be specified in the decla-
ration of the formal parameter. If the actual variable para-
meter contains a (computable) selector, this selector is evalua-
ted before the procedure is activated in order to designate

the selected component variable.

Functions are declared analogously to procedures. The
only difference lies in the fact that a function yields a
result which is confined to a scalar type and must be specified
in the function declaration. Functions may therefore be used
as constituents of expressions. In order to eliminate side-
effects, assignments to non-local variables are not allowed to

occur within the function.

3. Notation, terminology, and vocabulary

According to traditional Backus-Naur form, syntactic
constructs are denoted by English words enclocsed between the
angular brackets < and >. These words also describe the na-
ture or meaning of the construct, and are used in the accom-
panying description of semantics. Possible repetition of a
construct is indicated by an asterisk (0 or more repetitions)
or a circled plus sign (1 or more repetitions). If a sequence
of constructs to be repeated consists of more than one element,
it is enclosed by the meta-brackets { and } which imply a

repetition of 0 or more times.

The basic vocabulary consists of basic symbols classi-

fied into letters, digits, and special symbols.

<letter> ::= A|B|C|D|E|F|G|H]T]J|k|LIM|Nn|OlP|Q|R|S|T|UlvV|W|X]|Y]|Z]
albleldlelflglhlililk[1ImInlelplalzlsltlulv]wlx|y]z

<digit> ::= 0]1]2]|3|4a]5]6]|7]|8]9

- 10 -

{special symbol> ::=
sl-1* 1/ v Ial=l=1£ 1< L2l D IO =]

i1+ ")4]div|mod|nil]in]

if|then|else|case|of |zepeat|until |while|da|

jg;lig]dawntnlbegin'ggglwith|gat0|
const|var|type|array|zecord|powerset|file|class|

function[grocgdure|;ab§;

The construct

{ <any sequence of symbols not containing nind }
may be inserted between any two identifiers, numbers (cf.4),
or special symbols. It is called a comment and may be removed
from the program text without altering its meaning. The sym-
bols { and } do not occur otherwise in the language, and when
appearing in syntactic descriptions they denote metabrackets

implying repetition.

4, Identifiers and Numbers

Identifiers serve to denote constants, types, variables,
procedures and functions. Their association must be unique within
their scope of validity, i.e. within the procedure or function

in which they are declared (cf. 10 and 11).

<identifier> ::= <letter><{letter or digit>*
<letter or digit> ::= <letter> | <digit>

The decimal notation is used for numbers, which are the con-
stants of the data types integer and real. The symbol'prece-
ding the scale factor is pronounced as "times 10 to the power

of".

<number> ::= <{integexr> | {real number>
{integer> ::= <digit>&
<real number> ::= <digit>a.<digit>$ l
<digit>&.<digit>$'<scale factor>|<integer>'<scale factor>
{scale factor> ::= <digit>o I <sign> <digit>°

<{sign> ::= + I -

Examples:
1 100 0.1 5'-3 B7.35'+8

j 5. Constant definitions

A constant definition introduces an identifier as a

synanym to a constant.

{unsigned constant> ::= <number> | '<character>®!
<identifier> | nil '

{constant> ::= <unsigned constant> | <sign> <number>

<constant definition> ::= <identifier> = <{constant>

6. Data type definitions

A data type determines the set of values which variables
of that type may assume and associates an identifier with the
type. In the case of structured types, it also defines their

structuiing method.

- 12 -

{type> ::= <scalar type> | {subrange type> |
{array type> ! {record type> | {powerset type>]
{file type> | <class type> | {pointer type>]
{type identifier> '

{type identifier> ::= <identifier>

<type definition?> ::= <identifier> = <type>

6,1, Scalar types

A scalar type defines an ordered set of values by

enumeration of the identifiers which denote these values.

<{scalar type> ::= (<identifier> {,(identifier)})

Examples:

(red, orange, yellow, green, blue)

(club, diamond, heart, spade)

(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday)

Functions applying to all scalar types are:

succ the succeeding value (in the enumeration)

pred the preceding value (in the enumeration)

6,1,1. Standard scalar types

The following types are standérd in Pascal, i.e. the

identifier denoting them is predefined:

integexr the values are the integers within a range

depending on the particular implementation.

real

Boolean

char

alfa

6.1.2,

The values are denoted by integers (cf.4) and not

by identifiers.

the values are a subset of the real numbers depen-
ding on the particular implementation. The values are

denoted by real numbers as defined in paragraph 4.
(false, true)

the values are a set of characters depending on a
particular implementation. They are denoted by the

characters themselves enclosed within quotes.

the values are sequences of n characters, where n is
an implementation dependent parameter. If ~ and 3

are values of type alfa

K= @yee. @e.. a
R =b b

n

b , then
n

geee bpees

~ =R , if and only if a. = bi for i = 1...n,
o® <R, if and only if a. = bi for 1 = 1... k-1 and ak<bk
& >R , if and only if a, = bi for i = 1... k=1 and ak>bk

Aifa values are denoted by sequences of (at most) n
characters enclosed in quotes. Trailing blanks may
be omitted.

Alfa quantities may be regarded as a packed represen-

tation of short character arrays (ecf. also 10.1.3.).

Subrange types

A type may be defined as a subrange of another scalar type

by indication of the least and the highest value in the sub-

range.

The first constant specifies the lower bound, and must not

be greater than the upper bound.

{subrange type> ::= <constant>..<constant>

- 14 -

Examples: 1..100
-10..+10
Monday.«.Friday

6.2, Structured types

6,2,1, Arxay types

An array type is a structure consisting of a fixed number
of components which are all of the same type, called the
component type. The elements of the array are designated by
indices, values belonging to the so-called index type. The
array type definition specifies the component type as well as

the index type.

<array type> :: a;;ay[(index type> {,(index type>}]gi

{component type>

{index type> ¢scalar type> l {subrange type> |

{type identifier>
{component type> ::= <type>

If n index types are specified, the array type is called

n-dimensional, and a component is designated by n indices.

Examples: array [1..100] of real
array [1..10, 1..20] of 0..99
array L1U..+1d]gi Boolean
g;ggx'moalean]gi Color

6.2,2. Record types

A record type is a structure consisting of a fixed number
of components, possibly of different types. The record type
definition specifies for each component, called field, its

type and an identifier which denotes it. The scope of these

- 15 =

so-called field identifiers is the record definition itself,

and they are also accessible within a field designator (cf.7.2)

referring to a record variable of this type.

A record type may have several variants, in which case
a certain field is designated as the tag field, whose value
indicates which variant is assumed by the record variable at
a given time. Each variant structure is identified by a case

label which is a constant of the type of the tag field.

{record type> ::= record <field list> end
{field list> ::

il

{fixed part>|<fixed part>;<variant part> |

{variant part>

]

{fixed part> ::= <{record section> {;(record section)}

{record section> ::= <{field identifier> {,(field identifier)}:(type>

o
{variant part> ::= gase <tag field> : <type identifier> gf

<variant> {;<variant>}
. & . N &
{variant> ::= {<case label> :} (<field 1list>)|{<case label>d

{case label> ::= <unsigned constant>
{tag field> ::= {identifier>
Examples: record day: 1..31;

month: 1..12;
year: 0,,2000

[t}
3
o

record name, firstname: alfa;
age: 0..99;

married: Boolean

v}
J
[«

- 16 -

record x,y: reals
area: real;

case s: Shape pf
triangle: (side: real;

inclination, anglel, angle2: Angle);
rectangle: (sidei, side2: real;

skew, angled: Angle);
circle: (diameter: real)

end

6,2 Pow et t s

A powerset type defines a range of values as the powerset
of another scalar type, the so-called base type. Operators
applicable to all powerset types are:

\ union
A intersection
- set difference

in membership

{powerset type> ::= powerset <subrange type)'
pawerset <type identifier>

6,2,4, File types

A file type definition specifies a structure consisting
of a sequence of components, all of the same type. The number
of components, called the length of the file, is not fixed by
the file type definition, i.e. each variable of that type may

have a value with a different, varying length.

- 17 -

Associated with each variable of file type is a file
pogition or file pointer, denoting a specific element. The
file position or the file pointer can be moved by certain
standard procedures, some of which are only applicable when
the file is in one of the three modes:input (being read),
output (being written), or neutral (passive). Initially, a

file variable is in the neutral mode.

{file type> ::= file aof <type>

6.2,5, Class types

A class type definition specifies a structure consisting
of a class of components, all of the same type. The number of
components is variable; the initial number upon declaration of
a variable of class type is zero. Components are created
(allocated) during execution of the program through the standard
procedure alloc. The maximum number of components which can

thus be created, however, is specified in the type definition.

{class type> ::= glass <maxnumd> of <type>

<maxnum> ::= <integer>

6,2,6, Pointer types

A pointer type is associated with every variable of class
type. Its values are the potential pointers to the components
of that class variable (cf.7.5) and the pointer constant nil
designating no component. A pointer type is said to be bound

to its class variable.

{pointer type> ::= T <class variable>

class variable> ::= <variable>

- 48 -

Examples of type definitions:

Color = (red, yellow, green, blue)

Sex = (male, female)

Charfile = file of char

Shape = (triangle, rectangle, circle)

Card = array [1..80]af char

Complex = record realpart, imagpart: real engd
Persaon = record name, firstname: alfa;

age: integer;
married: Boolean;
father, youngestchild, eldersibling: tfamily;
case s: Sex of
male: (enlisted, bold: Boolean);
female: (pregnant: Boolean;
size: array [1..3] gof integer)
end

7. Declarations and denotations of variables

VVariable declarations consist of a list of identifiers

denoting the new variables, followed by their type.

{variable declaration> ::= <identifiexr> {,(identifier)} : {type>

Two standard file variables can be assumed to be predeclared

as

input, output: file of char

The file input is restricted to input mode (reading only), and
the file output is restricted to output mode (writing only).

A Pascal program should be regarded as a procedure with these

two variables as formal parameters. The corresponding actual

parameters are expected either to be the standard input and

output media of the computer installation, or to be specifyable

- 19 -

in the system command activating the Pascal system.

Examples:

X,¥,z: real

u,v: Complex

i,j: integer

k: 0..9

p,q: Boolean

operator: (plus, times, absval)
a: array [0..63]of real

b: array [Color, Boolean]gf

record occurence: integer;
appeal: real
end

c: Color

f: file of Card

huel, hue?: powerset Color
family: glass 100 of Person

pl,p2: % family

Denotations of variables either denote an entire variable or

a component of a variable.

{variable> ::= <entire variable> | {component variable>

7.1, Entire variables

An entire variable is denoted by its identifier.

<entire variable> ::= <variable identifier>

{variable identifier> ::= <identifier>

_20-

2 omponen

A companent of a variable is denoted by the denotation
for the variable followed by a selector specifying the
component. The form of the selector depends on the structuring

type of the variable.

{component variable> ::= <indexed variable> I
{field designator> I {current file component> |

<referenced component>

7.2.1, Indexed variables

A component of an n-dimensional array variable is denoted
by the denotation of the variable followed by n index expres-

sions.

{indexed variable> ::=
{array variable> [<expression> {,(expression)}]

{array variable> ::= <variable>

The types of the index expressions must correspond with

the index types declared in the definition of the array type.

Examples:
a[12]
ali+j]
blred,true]
b[suce(e), p Aql
4[]

(2,2, Field designators

A component of a record variable is denoted by the
denotation of the record variable followed by the field identifier

of the component.

- 21 -

{field designator> ::= <record variable>.<field identifier>
{record variable> ::= <variable>

{field identifier> ::= <identifier>

Examples:

u.realpart
v.realpart
b[red,true].appeal
p2 % .size

71.2.,3, Current file components

At any time, only the one component determined by the

current file position (or file pointer) is directly accessible.

<current file component> ::= <file variable)> }

{file variable> ::= <variable>

7.2.4., Referenced components

Components of class variables are referenced by pointers.

{referenced component> ::= <pointer variable> {

{pointer variable> ::= <variable>

Thus, if p1 is a pointer variable which is bound to a
class variable v, pl denotes that variable and its pointer

value, whereas p1{ denotes the component of v referenced by p1.

Examples:
p1t., father
p1t. elder sibling!. youngest child

- 22 -

8. Expressions

Expressions are constructs denoting rules of computation
for obtaining values of variables and generating new values by
the application of operators. Expressions consist of operands,

i.e. variables and constants, operators, and functions.

The rules of composition specify operator precedences accor-
ding to four classes of operators. The operator =1 has the
highest precedence, followed by the so-called multiplying opera-
tors, then the so-called adding operators, and finally, with the
lowest precedence, the relational operators. Sequences of opera-
tors of the same precedence are executed from left to right.

These rules of precedence are reflected by the following syntax:

{factor> ::= <variable> l {unsigned constant> |
<function designator> | <set> | (<expression>) |
“i<{factor>

<set> ::= [<expression> {,(expression)l] | []
<{term> ::= <factor> | <{term><multiplying operator><{factor>
<simple expression> ::= <{term> |
{simple expression> <adding operator><{term> |
<adding operator><term>
{expression> ::= <simple expression> |
{simple expression><{relational operator>

{gimple expressiaon>

Expressions which are members of a set must all be of the

same type, which is the base type of the set. [] denotes the

empty set.

Examples:

Factors: X
15
(x+y+2z)
sin(x+y)

[red,c,green]
TP

- 23 -~

Terms: x ¥y

i/(1-1)

P Aq

(x L y)IA(y < z)
Simple expressions: x + y

-X

huel v hue?2

i*j + 1

Expressions: X

il
—
o
o

B8B.1. Operators

8.1AThe Operator 4

The operator -1 applied to a Boolean operand denotes

negation.

8.1.2. Multiplying operators

<multiplying operator> ::= * | / | div | mod | A

- 24 -

operator | operation type of operands |type of result
integer, if both ope-
. . . real X
* multiplication it rands are of type in-
integer teger, real otherwise
real
. . . l
/ division integer rea
div division integer integer
with truncation g
mod modulus integer integer
logical "and" Boolean Boolean
& set intersection{any powerset T
type T
8.1.3. Adding operators
<adding operator> ::= + [- I \
operator | operation type of operands |type of result
+ addition { Feal integer, if both
integer
operands are of
- subtraction { real type integer,
integer real otherwise
- set difference
y { logical "oz Boolean Boolean
set union any powerset T
. - type T
When used as aperators with one operand only, - denotes

gign inversion, and + denotes the identity operation.

- 25 .

8.1.4. Relational operators

<relational operator> ::= =|#£|<|<|>]>]in
operator | type of operands result
= # any type, except file and class Boolean
types
< any scalar or
< 2 subrange type Baolean
in any scalar or subrange Boolean
type and its powerset
type respectively

Notice that all scalar types define ordered sets of values.

In particular, false < true.

The operators < and 2 may also be used for comparing values
of powerset type, and then denote set inclusion < and D

respectively.

B.2. Function designators

A function designator specifies the activation of
a function. It consists of the identifier designating the
function and a list of actual parameters. The parameters are
variables, expressions, procedures, and functions, and are
substituted for the corresponding formal parameters {(cf. 9.1.2.,
10, and 11). -

{function designator> ::=
<function identifier> (<actual parameter {,<actual parameter>}

{function identifier> ::= <identifier>

- 26 -

Examples:

Sum(a,100)
GCD(147,k)
sin(x+y)
eaf (f)

9, Statements

Statements denote algorithmic actions, and are said to be

gxecutable.

{statement> ::= <simple statement> | {structured statement>

9,1. Simple statements

A simple statement is a statement of which no part consti-

tutes another statement.

{simple statement> ::= <assignment statement> I

{procedure statement> | {goto statement>

9.1.1. Assignment statements

The assignment statement serves to replace the current value

of a variable by a new value indicated by an expression. The

assignment operator symbol is := , pronounced as "becomes",
<assignment statement> ::= <{variable> := <expression> |
{function identifier> := <expression>

&

The variable (or the function) and the expression must be of
identical, but neither file nor class type, with the following

exceptions being permitted: .

- 27 -

1. the type of the variable is real, and the type of the

expression is integer or a subrange thereof.

2. the type of the expression is a subrange of the type

of the variable.
Examples:

X = y+z
p = (1 £ 1)A (i < 100)
i 1= sqr(k) - (i*j)

hue := [blue,succ(c)]

9.1,2., Procedure statements

A procedure statement serves to execute the procedure
denoted by the procedure identifier. The procedure statement
may contain a list of actual parameters which are substituted

in place of their corresponding formal parameters defined in

the procedure declaration (cf. 10). The correspondence is
established by the positions of the parameters in the lists

of actual and farmal parameters respectively. There exist four
kinds of parameters: variable parameters, constant parameters, pro-
cedure parameters (the actual parameter is a procedure identifier),
and function parameters (the actual parameter is a function iden-

tifier).

In the case of variable parameters, the actual parameter must
be a variable. If it is a variable denoting a component of a
structured variable, the selector is evaluated when the substitu-
tion takes place, i.e. before the execution of the procedure. If
the parameter is a constant parameter, then the corresponding actual

parameter must be an expression,

-28 -

{procedure statement> ::= <{procedure identifier> |
<procedure identifier> (<actual parameter>
{,<actual parameter>})

{procedure identifier> ::= <identifier>

{actual parameter> ::= <expression> | <variable> |

{procedure identifier> | <function identifier>

Examples:
next
Transpose (a,n,m)

Bisect (sin,-1,+2,%x,q)

9,1,3, Goto statements

A goto statement serves to indicate that further processing
should continue at another part of the program text, namely
at the place of the label. Labels can be placed in front of

statements being part of a compound statement (cf.2.1.).

{goto statement> ::= goto <label>
{label> ::= <integer>

The following restrictions hold concerning the applicability
of labels:

1. The scope (cf.10) of a label is the procedure within which it
is defined. It is therefore not possible to jump into a

procedure.

2. If a goto statement leads outside of a procedure, then its label
must be specified in a label declaration in the heading of the

procedure in which the label is defined.

9.2, Structured statements

Structured statements are constructs composed of other
statements which have to be executed either in sequence (com-
pound statement), conditionally (conditional statements), or

repeatedly (repetitive statements).

{structured statement> ::= <{compound statement> l
<conditional statement> | <repetitive statement> !

<with statement>

9.2.1, Compound statements

The compound statement specifies that its component state-
ments are to be executed in the same sequence as they are
written. Each statement may be preceded by a label which can ﬁ

be referenced by a goto statement (cf.9.1.3.).

{compound statement> ::=

begin <component statement> {;(component statement)} end
{component statement> ::=

{statement> | <label definition><statement>
{label definition> ::= <label>

Example:

begin z := x; x :=y; y := z gnd

9,2.2. Caonditional statements

A conditional statement selects for execution a single

one of its component statements.

{conditional statement> ::=

<if statement> | {case statement>

- 30 -

9.2.2.1, If statements

The if statement specifies that a statement be executed

only if a certain condition (Boolean expression) is true.

If it is false, then either no statement is to be executed, or

the statement following the symbol glse is to be executed.

<if statement> ::= if <expression> then <statement> |

if <expression> then <{statement> glse <statement>

The expression between the symbols if and then must be of

type Boolean.

Note:

The syntactic ambiguity arising from the‘ccnstruct

if <expression-1> then if <expression-2> then <statement-1>

else <{statement-2>
is resolved by interpreting the construct as equivalent to

if <expression-1> then
begin if <expression-2> then <statement-1> eglse <statement-2>

end

Examples:

if x < 1.5 then z := x+y else z := 1.5
if p # nil then p := pt.father

9.2.2.2, Case statements

The case statement consists of an expression (the selector)
and a list of statements, each being labeled by a constant of
the type of the selector. It specifies that the one statement
be executed whose label is equal to the current value of the

selector.

- 31 -

{case statement> ::= case <expression> gf ‘
{case list element> {;<case list element)}gﬂg ﬁ
{case list element> ::= {<case label)ﬂq&ﬁatement> I
{(case label):}‘B

Examples:
case operator of
plus: X 1= X+y3
times: x = X¥y;
absval: 4if x < 0 then x := -x
end

9.2.3. Repetitive statements

Repetitive statements specify that certain statements are
to be executed repeatedly. If the number of repetitions is known
beforehand, i.e. before the repetitions are started, the for

statement is the appropriate construct to express this situation;

otherwise the while or repeat statement should be used.

{repetitive statement> ::= <while statement> ‘

{repeat statement> | <for statement>

9.2.3.1. While statements

{while statement> ::= while <expression> do <statement>

The expression controlling repetition must be of type Boolean.
The statement is repeatedly executed until the expression be-
comes false. If its value is false at the beginning, the

statement is not executed at all. The while statement

while e do S

is eguivalent to

- 32 -

if e then
begin 5;
while e do S
end

Examples:

while (a[i] # x)A (i<n) dg i := i+1

while i > 0 do

begin if odd(i) then z := z¥*x;
i t= 1 div 2
x 1= sqr(x)

end

9.2.3.2. Repeat statements

{repeat statement> ::=

repeat <{statement> {;(statement>} until <expression>

The expression controlling repetition must be of type Boolean.
The sequence of statements between the symbols repeat and
until is repeatedly {and at least once) executed until the

expression becomes true. The repeat statement

repeat S until e

is equivalent to

begin S;
if —1e then
repeat S until e

end

Examples:

repeat get(f)
until (ft = a)y eaf(F)

- 33 -

9,2.3.3. For statements

The for statement indicates that a statement is toc be
repeatedly executed while a progression of values is assigned

to a variable which is called the control variable of the for

statement.

{for statement> ::=
for <control variable> := <for list> do <statement>
{for 1list> t:= <initial value> tg <final value> I
<initial value> downto <final value>
<control variable> ::= <identifier>
<initial value> ::= <expression>

{final value> ::= <expression>

The control variable, the initial value, and the final value

must be of the same scalar type (or subrange thereof).

A for statement of the form

—

or v := el to e2 do S

is equivalent to the statement

if e1 £ e2 then
begin v := el; 53

for v := succ(v) to e2 do S
end

and a for statement of the form

—

or v := el downto e2 dg S

is equivalent to the statement

h
1

0]

n
3 S5
pred(v) downto e2 do 5

if et

begi

N
ot

lul
H < |\v
o

e
\Y%

— |3

[u]

end

Note: The repeated statement S5 must alter neither the value

of the control variable nor the final value.

Examples:
for i := 2 to 100 do if ali] > max thep max := ali]
for i :=1 to n do
for j := 1 to n do
begin x := 0;
for k := 1 to n do x := x+ali,k]*b[k,jl;
cli,j] := x
end

for ¢ := red to blue dg try(c)

9.2.4., With statements

{with statement> ::= with <record variable> do <statement>

Within the component statement of the with statement, the
components (fields) of the record variable specified by the
with clause can be denoted by their field identifier only, i.e.
without preceding them with the denotation of the entire record
variable. The with clause effectively opens the scope contai-
ning the field identifiers of the specified record variable,

so that the field identifiers may occur as variable identifiers.

Example :

with date do

begin month := month+1;
if month > 12 then
begin month := 1; year := year+
end

end

This statement is equivalent to

begin date.month := date.month+1;
if date.month > 12 then
begin date.month := 1; date.year := date.year+i
end

end

- 35 -

10. Procedure declarations

Procedure declarations serve to define parts of programs and
to associate identifiers with them so that they can be activated
by procedure statements. A procedure declaration consists of the
following parts, any of which, except the first and the last, may
be empty:

{procedure declaration> ::=
{procedure heading><label declaration part>
{constant definition part><{type definition part>
{variable declaration part>

{procedure and function declaration part><statement part>

The procedure heading specifies the identifier naming the pro-

cedure and the formal parameter identifiers (if any).
The parameters are either variable-, procedure-, or function

parameters (cf. also 9.1.2.).

{procedure heading> ::= procedure {identifier> ;
procedure <identifier> (<formal parameter section>

{;(formal parameter section>}) ;

{formal parameter section> ::=
{parameter group> |
const <{parameter group> {;<parameter grmup)} I
var <parameter group> {;(parameter group>} |
function <parameter group> |
procedure {identifier> {,(identifier)}
{parameter group> ::= <identifier> {,(identifier)};
{type identifier>

A parameter group without preceding specifier implies constant

parameters.

- 36 .

The label declaration part specifies all labels which are
defined local to the procedure and occur in goto statements

within procedures which are themselves local to the procedure.

<label declaration part> ::= <empty> |
label <label> {,<label>}

The constant definition part contains all constant synonym de-

finitions local to the procedure.

{constant definition part> ::= <empty>

const <constant definition> {,(constant definition)};

The type definition part contains all type definitions which

are local to the procedure declaration.

{type definition part> ::= <empty> '
type <type definition> {;(type definition)};

The variable declaration part contains all variable declarations

local to the procedure declaration.

{variable declaration part> ::= <{empty> ’

var <variable declarati0n>{;<variable declaration>};

The procedure and function declaration part contains all pro-

cedure and function declarations local to the procedure declara-

tion.

{procedure and function declaration part> ::=
{(procedure or function declaration> ;}
{procedure or function declaration> ::=

{procedure declaration> I {function declaration>

The statement part specifies the algorithmic actions to be
executed upon an activation of the procedure by a procedure

statement.

{statement part> ::= <{compound statement>

- 371 -

All identifiers introduced in the formal parameter part, the
constant definition part, the type definition part, the variable-,
procedure or function declaration parts are local to the proce-
dure declaration which is called the scope of these identifiers.
They are not known outside their scope. In the case of local

variables, their values are undefined at the beginning of the

statement part.

The use of the procedure identifier in a procedure state-
ment within its declaration implies recursive execution of the

procedure.
Examples of procedure declarations:

procedure readinteger (yar x: integer);
yvar i,j: integer;
begin i := 0;

while (input#> '0') A(inputt £ '9') do
beqin j := int(inputd) - int('0');
i :=41 %10 + j;
get(input)
end;
x 1= 1i

end

procedure Bisect(function f: real; const low, high: real;
var zero: real; p: Boolean);
var a,b,m: real;
begin a := low; b := high;
if (f(a) > 0) v (f(b) < 0) then p := false glse
begin p := true;
while abs(a-b) > eps do
begin m := (a+b)/2;
if f(m) > 0 then b := m glse a :=m
end ;
zero := a

[u]
3
s

- 38 -

procedure GCD(m,n: integer; vap x,y,z: integer);
var al,a2,b1,b2,c,d,q,r: integer; m 2 0, n > O
begin{Greatest Common Divisor x of m and n,
Extended Euclid's Algorithm, cf.[2] p.14}
al :=0; a2 :=1; bl :=1; b2 :=0; c :=m; d := n;
while d # 0 do

begin {al*m + b1*n a2*m + b2*n = c,

gcd(c,d) = gcd(m,n))
g :=rc div d; r := c mod d;

c = g*d+r, gcd(d,r) = gcd(m,n))
a2 := a2 - q*al; b2 := b2 - g*bl;

{ a2*m + b2*n = 1, al*m + bl1*n = d}
c :=d; d := 13

r := al; al := a2; a2l := r;

r := bl; bl b2; b2 := 13

{ al*m + bi1¥*n d, a2*m + b2*¥n = ¢,
ged(c,d) = gcd(m,n)}

end;

{ ged(c,0) = ¢ = gcd(m,n)}

X 1=c3 y = a2y z := b2

{ x = ged(m,n), y*m + z*n = gcd(m,n) }

10,1, Standard procedures

Standard procedures are supposed to be predeclared in
every implementation of Pascal. Any implementation may feature
additional predeclared procedures. Since they are, as all
standard quantities, assumed as declared in a scope surrounding
the Pascal program, no conflict arises form a declaration rede-
fining the same identifier within the program. The standard

procedures are listed and explained below.

10.1.,1. File positioning procedures

put(f) advances the file pointer of file f to the next
file component. It is only applicable, if the
file is either in the output or in the neutral

mode. The file is put into the output mode.

get(f)

reset(f)

advances the file pointer of file f to the next file
component. It is only applicable, if the file is
gither in the input or in the neutral mode. If
there does not exist a next file component, the
end-of-file condition arises, the value of the
variable denoted by f¢ becomes undefined, and the

file is put into the neutral mode.

the file pointer of file f is reset to its beginning,

and the file is put into the neutral mode.

10.1.2, Class component allocation procedure

alloc{(p)

alloc(p,t)

allocates a new component in the class to which
the pointer variable p is bound, and assigns the
pointer designating the new component to p. If
the component type is a record type with variants,
the form

can be used to allocate a component of the variant
whose tag field value is t. However, this allo-
cation does not imply an assignment to the tag
fiegld. If the class is already compleately alloca-

ted, the value nil will be assigned to p.

10,1.3. Data transfer procedures

Assuming that a is a character array variable, z is an alfa

variable, and i is an integer expression, then

pack(a,i,z) packs the n characters a[i] ... ali+n=1] into the

alfa variable z (for n cf. 6.1.1.), and

unpack(z,a,1) unpacks the alfa value z into the variables

afi] ... a[i+n-1].

11. Function declarations

Function declarations serve to define parts of the program
which compute a scalar value or a pointer value. Functions
are activated by the evaluation of a function designator (cf.B8.2)
which is a constituent of an expression. A function declaration
consists of the following seven parts, any of which, except the

first and the last, may be empty (cf. also 10.).

{function declaration> ::=

<{function heading><label declaration part>
{constant definition part><{type definition part>
{variable declaration part>

{procedure and function declaration part><{statement part>

The function heading specifies the identifier naming the function,
the formal parameters of the function (note that there must be
at least one parameter), and the type of the (result of the)

function.

{function heading> ::=
function <identifier> (<{formal parameter section>
{;(formal parameter sectinn)}) : <result type> ;
{result type> ::= <type identifiexr>

The type of the function must be a scalar or a subrange type or
a pointer type. Within the function declaration there must be at
least one assignment statement assigning a value to the function

identifier. This assignment determines the result of the function.

- 41 -

Occurrence o the function identifier in a function designa%tor
within its declaration implies recursive execution of the

function. Within the statement part no assignment must occur
to any variable which is not local to the function. This rule

also excludes assignments to parameters.

Examples:

function Sqrt(x: real): real;
var x0,x1: real;
begin x1 = x; { x > 1, Newton's method }

x0 1= x1; x1 1= (xD + x/x0) * 0.5
ixDZ—Z*x1*xD+x=D}
ntil abs (x1 - x0) £ eps;
1 (xD-eps) < x1 £ (x0 + eps),
(x - 2*¥eps*x0) < x02 < (x + 2*eps*x0) }
Sqrt := x0
end

function Max(a: vector; n: integer): real;

var x: real; i: integer;
beqgin x := a[1];
foxr i := 2 to n do
begin { X = max(a1.. an_1)}
if x < al[i] then x := ali]
?—x = max(a1...a.)}
i
nd ;
x = max(a,...a_)}
1
Max 1= x

function GCD(m,n: integer): integer;
begin if n = 0 then GCD := m else GCD := GCD{(n,m mod n)
end

- 42 -

function Power(x: real; y: integer): real; {y 2 U}
var w,z: real; i: integer;
begin w := x; 2z =15 1 :=y;
while i # 0 da
begin { z*wl = x¥}
if odd(i) then z := _z¥*w;
i =1 div 23 { z*WZi = xY}
w = sqr(w) { z*wl = xY}
engs
i=20, z-= xY }
Power := z

]

11,1, Standard functions

Standard functions are supposed to be predeclared in every
implementation of Pascal. Any implementation may feature addi-

tional predeclared functions (cf. also 10.1.).

The standard functions are listed and explained below:

11.,1,1. Arithmetic functions

abs(x) computes the absolute value of x. The type of
x must be either real or integer, and the type
of the result is the type of x.

sqr(x) computes x2. The type of x must be either real

or integer, and the type of the result is the

type of x.
sin(x))
cos(x)
exp(x) , the type of x must be either real or integer, and
In(x) the type of the result is real
sqrt(x)
arctan(x)J

- 43 -

11.1.2, Predicates

odd(x) the type of x must be integer, and the result is x mod 2 = 1

gof (f) indicates, whether the file f is in the end-of-file status.

11,1,3, Transfer functions

trunc(x) x must be of type real, and the result is of type integer,

such that abs(x)=1 < trunc(abs(x)) < abs(x)

int{x) x must be of type char, and the result (of type integer)
is the ordinal number of the character x in the defined

character set.

chr(x) x must be of type integer, and the result (of type char)

is the character whose ordinal number is x.

11.1.4. Further standard functions

succ(x) x is of any scalar or subrange type, and the result is the

successor value of x (if it exists).

pred(x) x is of any scalar or subrange type, and the result is

the predecessor value of x (if it exists).

12. Programs

A Pascal praogram has the form of a procedure declaration without

heading (cf. alsa 7.4.).

{program> ::= <constant definition part><{type definition part>
{variable declaration part>

{procedure and function declaration part><{statement part>.

)
N

jusuwalels

®

,||.e|||Tmz PTaTs T@SWT

2d&y 13S¥3M0d

J37TIUSPT

| I9TJTIUSPT |

r—

1re} punodwod NI938

R N O Il i G

a9 13USPT

IBTITIUSPT : JI3TITIULPT H @ll
1S1[181wreaed

_ x38aut]
| I

.lll._ :o«mmweaxm_.l.m._ 1LNN juauwIalels F<wn_ww'||
~@ [@ H)
!

ED— o
] O O T, SO KT \C2
JISTJTIUIPT

T i e Bl o G0 s T 2O

45

EEYETET.

46

)
N\

uorssaadxa

©

o —O

uotrssaxdxa

] ajqetaea l

Jaymuapt

E

|
_[iuersuoo

i

J0jeaado Furdynuw E

Joyexado Surppe Iﬂﬂﬁ J Jojeaado Buippe

waa}
1

uorssaadxa ardwrs

uorssaadxa w_”&E«quoumawmo TeuoTjerad

":oﬂmmw.axm arduuts T
@O

Z3TJTIUAPT

1ST] P13y

- 47 -

14. Pascal 6000

The version of the language Pascal which is processed by
its implementation on the CDC 6000 series of computers is
described by a number of amendments to the preceding Pascal
language definition. The amendments specify extensions and
restrictions and give precise definitions of certain standard
data types. The section numbers used hereafter refer to the

corresponding sections of the language definition.

3. Vocabulary

Only capital letters are available in the basic vocabulary

of symbols. The symbol packed is added to the vocabulary. (cf.6.2.2.)
Symbols which consist of a sequence of underlined letters are

called word-delimiters. They are written in Pascal 6000 without

underlining and without any surrounding escape characters,
Blanks or end-of-lines may be inserted anywhere except within :=,
word-delimiters, identifiers, and numbers.

4, Identifiers

Only the 10 first symbols of an identifier are significant.
Identifiers not differing in the 10 first symbols are considered
as equal.

Word-delimiters must not be used as identifiers. At least ane
blank space must be inserted between any two word-delimiters

or between a word-delimiter and an adjacent identifier.

6. Data types
6.17.1. Standard scalar types
integer is defined as

8
type integer = —248+1 .. 24 -1

real is defined according to the CDC 6000 floating
point format specifications. Arithmetic opera-

tions on real type values imply rounding.

- 48 -

char is defined by the CDC 6000 display code character set.

This set is incremented by a separator character denoted

by the standard identifier eol , meaning "end of line".
ecl A B C D E F G H I
J K L M N 0 P Q S
T u v W X Y z g 1 2
3 4 5 6 7 8 9 + - *
/) % = y ' [
] £ v At}
£ 2 =
(Note that the characters ' { } are special features

on the printers of the ETH installation, and correspond

to the characters = r* ¢ on standard CDC systems.)

alfa the number of characters packed into an alfa value is n=10
(cf. 6.1.1.).

6.2.2. In a record type definition, the symbol record may be pre-
ceded by the symbol packed to specify that a compact storage
representation is to be used for variables of this type. Fields
of packed records must not be used as actual variable parameters,

nor as parameters of a formal procedure.

6.2.3. Powerset types

The base type of a powerset type must be either

1. a scalar type with less than 60 values, or

2. a subrange of the type integer, with a minimum element min(T) > O
and a maximum element max(T) < 59, or

3. a subrange of the type char with the maximum element
max(T) < '>',

- 49 .

6.2.4, and 6.,2.5. File and class types

No component of any structured type can be of a file type

or of a class type.

7. Variable declarations

File variables declared in the main program may be restricted

to either input or output mode by appending the specifiers
[in] or [Dut]

to the file identifier in its declaration. Files restricted

to input mode (input files) are expected to be Permanent

Files attached to the job by the SCOPE Attach command, and
files restricted to output mode may be catalogued as Permanent
Files by the SCOPE Catalog command. In both commands, the file

identifier is to be used as the Logical File Name [3].
The specifiers
[print] and [punch]

cause the file to be printed and punched respectively. They are
applicable to character files only and restrict the file to the

output mode.

Example:

f1[in],fZ[out],f3[print],f4[punch]; file of char

10. and 11. Procedure and function declaraticons

A procedure or a function which contains local file declarations

must not be activated recursively.

- 50 -

10.1.4. Additional Standard Procedures
write(el,e2 ... en)

el ... en are expressions whose values are converted into
character sequences which are appended to the standard file
OUTPUT. The admissible types of expressions and the lengths

of the generated seguences are:

char 1
integer 10 (or 20) at least one
real 20 leading blank
Boolean 10
alfa 10

Note that a line may contain at most 136 characters, and that
termination of a line must be explicitly indicated by writing

a character enl, e.g.
write(i,j,x+y,eol)

Note further that the first character of each line is not printed

but interpreted as a printer control character, and usually

should be a blank., '0O' causes double spacing, '1' skipping

to the top of a new page.

read(vi,v2 ... vn)
for each variable Vi the standard file INPUT is inspected. If
vy is of type char, then the next character is assigned to vy
(i.e. "read(v)" is equivalent to "get(input); v := input?® ");
if vy is of type integer or real, the file is scanned for a
sequence of characters representing a number according to the
syntax of Pascal. The number may be preceded by separator cha-
racters and a sign; separator characters are any characters except
digits, apostrophes, and periods. The first character after the

number is also read. The number is then assigned to the variable

V..
1

- 51 =

text('t')
copies the text t onto the standard file OUTPUT. +t may be

any sequence of characters not containing apostrophes. This

statement must be placed within one line of the program.

15. How to use the Pascal 6000 System

1. Control statements

In order to activate the Pascal compiler, the following two

control statements are required [3]:

ATTACH(PASCAL,PASCALSYSTEM)
PASCAL.

(PASCALSYSTEM is a Public Permanent File in the RZETH system).

A Pascal job consists of the following parts:

Jobcard (minimum field length is 460008)
Control statements

EOR (end of record card)

Pascal program

Input data (optional)

EQOI (end of information card)

The control statement PASCAL may optionally contain any of the

following parameters {in any order):

PASCAL(P=program,D=data,L=1isting,R=results,
LL=linelimit,FL=fieldlength)

- 52 -

program, data, listing, and results are file names (cf. section 7);

linelimit and fieldlength are numbers. The default values are:

program = INPUT

data = INPUT

listing = OUTPUT

results = OUTPUT

linelimit = 500

fieldlength = current fieldlength (octal)

2. Compiler instructions

The compiler may be instructed to generate code according to
certain options; in particular, it may be requested to insert various
run-time test instructions into the generated code. Compiler in-
structions are written as comments and are designated as such by =a

$-character as the first character of the comment:
{$<instruction sequence?> <any comment>}

The instruction sequence is a sequence of instructions separated

by commas, and each instruction consists of a letter designating

the option followed by a + sign (activation the option) or a - sign
(passivating the option).

The following options are availsble:

A include run-time tests for all assignments to variables of
subrange type. Check whether the assigned value lies within
the specified range.

D include tests preceding all divisions to check against zero
divisors.

I include tests in all automatic integer to real conversions
48

to assure that the converted value satisfies |i| < 2

compile real arithmetic operations with rounding.

X include run-time tests to assure that all index values lie
within the specified index bounds. This applies o array
indices as well as case statements.

C following each procedure, list the compiled instructions in

the form of COMPASS assembly code.
The default conventions are
{$a-,D-,1-,R+,x-,C-]
The expansion of code and the degradation in execution speed may
be considerable in case of selection of options A, I and X; they
are small for option D. The R option involves no additional ex-

pense. The C option must be used with great care, since it gene-

rates large amounts of output.

3. Compiler error messages

The compiler indicates detected errors by an arrow pointing to
the relevant place in the text and by a number referring to the

following table:

scalar type expected
integer too large
error in constant
= expected
field name declared twice
bad range
tagfield type bad
name declared twice
) expected

expected
identifier expected
identifier not declared
13. index must be of scalar type

I Y

—
Owo~Nono B wWwnN —
.

s
N —
. e

- 54 -

14. of expected

15. variable type is not class

16. procedure declared twice

17. end expected

18. error in type declaration

19. error in variable declaration

21. error in procedure declaration

23. parameter list ignored

24, error in declaration part

25. lowbound > highbound

26. not a variable identifier

28. symbolic subrange type not allowed

29. parameters missing in function declaration

30. component type is class or file

31. undeclared identifier

32. variable or field identifier expected

33. expression too complicated

34. type of variable should be array

35. type of expression must be scalar

36. conflict of index type with declaration

37.] expected

38. type of variable should be record

39. no such field in this record

40. type of variable should be pointer or file

41, field name expected

42. illegal symbol in expression

43. undefined label

44, illegal type of parameter in standard function or standard pro-
cedure

45. type identifier in statement part

46, procedure used as function

47. type of standard function parameter should be integer

4B.) expected

49, identifier expected

50. illegal type of operand

51. V cannot be used as monadic operator

52. := expected

53. assignment not allowed

54. illegal symbol in statement

55. type or constant identifier

56. then expected

57. type of expression is not Boolean

58. ; expected

59. do expected

60. illegal parameter substitution

61. label expected

62. illegal type of expression

63. constan t expected

64. : expected

65.
66.
67.
68.
69.
70.
7.
T2.
3.
4.
75.

T6.
7.
8.
79.
80.
81.
82.
83.
84.
85.
Bé.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.

- 55 -

of expected

tagfield missing for this variant
until expected

end expected

loop control variable must be simple and local or glaobel
to/downto expected

too many cases in case statement

number of parameters does not agree with declaration
mixed types

too many labels in this procedure

too many (laong) constants or yet undefined labels in this
procedure

depth of procedure nesting too large

label defined more than ance

too many exit labels

(expected

, expected

assignment to formal function identifier illegal

too many nested with-statements

standard inline procedure / function used as actual parameter
too many (long) constants in this procedure
assignment to function identifie r must occur in function itself
actual parameter must be a variable

packed field not allowed here

operators < and > are not defined for powersets
redundant operation on powersets

procedure tooc long

too many exit labels or forward procedures

too many class or file variables

bad function type

= , # not allowed here

bad file declaration

type declared twice

end. encountered

[expected

index out of range

label too large

value is out of range

division by zero

parameter procedure has more than 17 parameters

16. Glossary

actual parameter
adding operator

array type

array variable
assignment statement
case label

case list element
case statement

class variable

class type

companent statement
component type
component variable
compound statement
conditional statement
constant

constant definition
constant definition part
control variable
current file component
digit

entire variable
expression

factor

field designator
field identifier
field list

file type

file variable

final value

fixed part

for list

formal parameter section
for statement
function declaration
function designator
function heading
function identifier
goto statement
identifier

if statement

index type

indexed variable
initial value

integer

label

label declaration part
label definition

U o0V ODDUOD2 D20 200NN N N OO NWNDOD U UOVO NN ONOND O OO NN

CJs © s » o s s s s s o o s o s s o
NN e NNNNNONNODNRNDN = NN = —

°

.

.
—_
°

(3 e » & s & o & ¢ o —2s —8 (s s & s s s 5 2 s
N . NN NN A
.

NN NN NN

N e

—

— N e

2.
K
1.
1.
1.
2.
2.2.
2.2.
6.
5.
1.
1.
1.
2.
3.3.
3.
2.
2.
2.
4.
3.
3.3.
2.
3.3.
3.3.
3.
2.1.
1.
1.
3.3.
3.

—

- 57 -

letter

letter or digit

maxnum

multiplying operator

number

parameter group

pointer variable

pointer type

powerset type

procedure and function
declaration part

procedure declaration

procedure heading

procedure identifier

procedure or function declaration

procedure statement

program

real number

record section

record type

record variable

referenced component

relational operator

repeat statement

repetitive statement

result type

scale factor

scalar type

set

sign

simple expression

simple statement

special symbol

statement

statement part

structured statement

tag field

term

type

type definition

type definition part

type identifier

variable

variable identifier

variable declaration

variable declaration part

variant

variant part

unsigned constant

with statement

while statement

oo\ B
.

@~ ~
NN NN NN

\D\DU‘ICT\U\—‘-\!—\I—-JG\—‘D\U\CDU\\D—‘\DL;J\DGBJ}CDU\D—‘\DKD

s e o o

Cle 5 o s o o s ®
NN e
N

Oe o o & =

« . s OO°
NN e

—

—

NN

.

. .
WwHdDdNNNON

.

.

.
—_
.

NN

.

w >

.

no

—
.

- B8 -

17. References

1. N. Wirth and C.AJ/R. Hoare, "A contribution to the development of
Algol", Comm. ACM 3, 6, pp. 413-432 (June 1966)

2. D.E. Knuth, "The Art of Computer Programming",
Vol. 1, Addison-Wesley (1968)

3. Control Data 6000 Computer Systems, SCOPE Reference Manual,
Pub.No. 60189400

