ALGOL W

REFERENCE MANUAL

JUNE 1972

PREFACE

This manual describes the ALGOL ¥ language and the compiler
constructed for the IBM 360 at Stanford University under the
direction of Niklaus Wirth. The language is based upon "A
Contribution to the Development of ALGOL™ by Niklaus Wirth and
C.A.R. Hoare. The compiler was written by Henry R. Bauer,
Sheldon Becker, Susan L. Graham and Edwin H. Satterthwaite who
also documented the systen.

Subsequently a number of mnminor amendments and several
extensions have been made to the language; substantial changes
have been made to the compiler to improve its efficiency and to
add to 1its capabilities. In particular, a debugging system has
been added which is a significant isprovement on the programming
tools normally provided by compilers. Many of these changes, the
work of Edwin Satterthwaite, have been described in the revised
documentation of the language and coapiler prepared by Richard L.
Sites (Stanford University Techmical BReport STAN—-CS-71-230,
"ALGOL W REFERENCE MANUAL") others have been described in NUMAC
Programming Notes 39 and 41, A few recent additions are
documented here for the first time. In preparing this edition of
the manual all of these sources have been used freely.

The manual consists of two distinct parts. 1In the first
part of the manual, sections one to eight define the ALGOL W
language. Sections nine to eleven form the "Programmer’s Guide
to ALGOL W"., Section nine describes the compiler, sections ten
and eleven deal with aspects of the operating systems, MTS and
05/360 respectively, which are relevant to the use of the ALGOL ¥
compiler. The second part of the manual is a transcription of
"Introduction to ALGOL W Programming” by Henry R. Bauer.
Amendments have been made here, to reflect changes to the
language and to simplify its transcription to machine readable
form. The author's permission to make these changes is
gratefully acknovwledged.

This edition of the ALGOL ¥ manual supercedes the 1970
edition of the NUMAC ALGOL ¥ manual and replaces NUMAC
Programming Notes 27, 39 and 41. <Changes since the previous
manual are summarised below.

1) The introduction of three new basic symbols, assert, algol
and fortran, providing a new statement, the assert
statement (cf.7.8) ard the ability to invoke externally
defined procedures {cf.5.3.2.8%).

2) The use of the character ¥Y_" as a character in identifiers
{(cf.3.1).

3) Changes to the precision of arithmetic; products ({other
than of integer quantities) have the guality ™long™.

4) The precedence of operators has been changed {cf.6, 6.4).
This obviates the need for the intuitively unnecessary
parentheses 1in conditions involviang relational and logical
operators, but implies changed interpretation of bit and
logical expressions involving these operators.

5) Block expressions are no longer restricted to defining
function procedure bodies but are permitted in any
expression (cf.6).

3

6) In comparing strings of equal 1lengths the shorter is
(effectively) extended with blanks to the length of the
longer before comparison. String assignments are done in a
single action rather than character by character left to
right, removing the anomalous behaviour on assigning
strings to substrings of themselves {(cf.6.4,7.2)

7) Pacilities for creating formatted output have been added to
the WRITE and WRITEON standard procedures {(cf.7.9) using
additional predeclared variables.

8) An additional exceptional condition, ENDFILE, is detected
on input.

9) Sections 9, 10, 11 and Appendix II are new.

10) The standard functions COMPLEXSQRT and LONGCOMPLEXSQRT have
been deleted.

BExcept in the case of the completely new sections (9, 10,
11, and Appendix II) changes (in content as opposed to layout or
presentation) since the previous version of the manual are marked
with vertical lines in the left margin.

The manual describes the 01JULY72 version of the compiler.

June, 1972. J. Eve

4 Table of Contents

LANGUAGE DESCRIPTION

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS 8
2« SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES 10
2.1 Basic SYMDOlS cceecesenccescscccnncanssenenss 10
2.2 Syntactic ERtitiesS cccececncecccansencsences 11
3. IDENTIFIERS ceececcsccccenssnsssvsnannsansomnansmnse 12
b. VALUES AND TYPES ceeccamcccensesncncancscennnenss 14
4.1 NURDEIS weweccesnsncascsscsnssnsnennsncnsaanese 14
4,2 Logical Values-;.................... 15
4.3 Bit SEQUENCES eveaceececcsancsssncnssannsnnns 15
4.4 StLiNGS cevecssescseccccccasscscssasanasmans 1D
4.5 REfEreONCES cescecssanncsscsnassacncscscsnsnns 10
5. DECLARATIONS cceeesenceccesncsenssasnsscnosneasances 17
5.1 Simple Variable Declarations eceeececccccase. 17
5.2 Array DeclaratioDS .cecececescecccssccsscssases 18
5.3 Procedure DeclaratiolNs eseececececcscccssceassas 18
5.4 Record Class DeclaratiolRS .ceececcececccccaceses 21
6. EXPRESSIONS ceecveeccncacsscsnasnnnsncsnsssenscsnnssns 20
6.1 VariableS .eecesecescccccscccsscacsccasnsscsncas 23
6.2 Punction DeSigNAtOrS cecececescssncescenssess 28
6.3 Arithmetic EXPreSSiONS .ceececcscccscscsssasas 25
6.4 Logical PXPresSSioNS ecececescccceccncncccssess 27
6.5 Bit EXPresSSioONS ceaececscccccscesnscscscsccansass 28
6.6 String EXPresSsioNS .eceecceccscsccccscncsoccss 29
6.7 Reference EXPresSSiONS ceeecececccccsscscncsaa 29
6.8 Conditional EXpPresSSiONS seeeccccccccccccccns 30
7. STATEMENTS ceeeecccnnssoscsccsaannsscscsasnsansnmonnanes J31
7ol BlOCKS cewececcccscsccnasasnssscsnscncsacsacsnan 31

7.2 Assignment StateBents ..ceecececcececcesccsscs 32

8.

Table of Contents

Procedure StateReNtS .cecceccssssenscsenssncasns

GOtO Stateﬂeﬁts PRI W A WA A R N A I R R R

If statements IR RN EEEEENREERRERE ENRERENRNEEERESREJSRESES B

Case Stateﬂents O W VO W RS P DD POV E eSS EeOS

Iterative StatemenNtsS ceesssenccccnsncseancecnes

Assett Stateﬂeﬂts EI I S IR I A I B N R BN BN BRI R

Standard ProceduireS ceesvesssasncenscacsccsnscce

7.9.1

7.9.3

The Input/Output SYStel .cecvceccsscscsas
Read Statements - W O % D H B OO PSS BE SO0 e

Hrite Statements ..-...-..0...-....¢;

Con

trOl State.ents - O® e e OO NS SR BNBONS

STANDARD PUNCTIONS AND PREDECLARED IDENTIPIERS ..

Standard Transfer FUNCLIiONS eescaccscencscons

Standard Punctions Of ANAlySiS cceeccccesccss

Time Fuﬂction IR R REEEEEREREBEENNEER-ENRERJNSEIESEEERSES]

Predeclared VariableS ceeemcsccasssccsncesane

Exceptional ConditionNs ceicececccecccaccccancas

GUIDE

PROGRAMMER'S

9.

THE

9.1

ALGOL w COHPILBR O O PV RN SO RO DT OEDSPEDS TSI SS

The Laﬂguage ITEEE RN I IR WA IR B IR E R R B R E X NEENRELSRSEN]

9.1.1

9.1.2

Sym

Sta

bol Representation ..ceceecccecccaas

ndard IdentifierS ceecccsccnsecnsca

9&1.3 Restrictions BB W B BW DD DD OO DRSS

Input Forﬂat IEEEEREREEER I N I I I N I I IR N R N

Compiler Directives .cccecccevcencaccscnnsnns

DebUQQing System . VWP O OW NP O OB N RO N D PSSO RS

Deb

ugging Pacilities .cceccccncccncace

9' u->3

The

TR!CE Rontine DWW DG D GY RO OSSN

33
34
35
36
36
38
38
38
39
40
41
44
44

45

46

47

52
52
52
53
53

54
54

56

56

10.

11.

Appendix
Appendix
1.

2.

Table of Contents

9.5 Compiler OULPUL eceecececcesccncsesanacsccsnnan

9.5.1 The Source Program Listing .ccececcace-

9.5.2 Debugging System Output ecceeccecececanss
9.6 Externally Defined Procedures ...cesssecesec=
ALGOL W IN MTS ecessnccssccccsancsccccsncncnsnosnsns
1071 MTS SUBMATY eaveccccsncscccsccccnsacssnansne
10.2 MNTS *XALGOLW Specificafions esscescecsssses
10.3 HMTS *ALGOLW SpecificationsS ceececcmcesccnccasn
10.4 MTS System Error Hessaées eemaccsvnesnecsses
ALGOL W IN OS scevevsscsccnnccsccnsncosnscssncnonss
11.1 0S5 SUMRBATY ccesencsecsencnscsssacancsmsanssascan
11.2 OS XALGOLW SpecificationNS cecececcecencccacse
11.3 0SS ALGOLW SpecificationNsS ececevccecmcecsecccan
11.4 O0OS Systeh Error MeSSAJesS eceeccessscccssnscss
I. CHARACTER ENCODING .cccecsvvccsnncasnssnsavsnsse
II. ERROR MESSAGES ccecccvvnccnsncssnasccsssscscas
Pass One Error MeSSAgeS ecssecsesescsscsncssnsonnnans
Pass TWO ETTIOr MESSAGES eecevwsecsscsscscsassncssnncnse
Pass Three Error MeSSAJeS secesveveccssscsscnscsasn
Loader ErTOr MESSAJES eesnvnscscasasssscscscssnses

Run-Time ErrOr MeSSAQeS cesceccncssesassssvsnssscse

56
57
58
63
66
66
67
68
70

71

71
71
73
77
78
79
79
81
85
86

87

ALGOL W

LANGUAGE DESCRIPTION

1 TERMINOLOGY, NOTATICN AND BASIC DEFINATIONS

The Reference Language 1is a phrase structure language,
defined by a formal metalanguage. This metalanguage makes use of
the notation and definitions explained below. The structure of
the language ALGOL W is determined by:

(1) VT, the set of basic {or terminal) symbols
of the language,
(2) VN, the set of syntactic entities
(or nonterminal symbols) ,and
{3) P, the set of syntactic rules {(or productions).

1.1 Notation

A syntactic entity is denoted by its name (a sequence
consisting only of letters, digits and hyphens) enclosed in the
brackets < and >. A syntactic rule has the fornm

<a> 21:= X

vhere <a> is a member of VN, and x is any possible sequence of
basic symbols and syntactic entities, simply to be called a
"sequence®. In ALGOL W, the set P contains the syntactic rule

<bar> ::= |

implying that | is a basic symbol of the language. RAdopting the
convention that all references to this basic symbol 1in other
syntactic rules shall be replaced by <bar> permits the
unambiguous use subsequently of the notation

€a> 2:1= X | Y | «=aes {| 2

as an abbreviation for the set of syntactic rules

<a> :1:= 2
In the syntactic rule
<empty> ::=
the sequence Contains zero symbols, i.e. the empty sequence.

1.2 Definitions
1. A sequence x is said to directly produce a sequence Yy
if and only if there exist (possibly empty) sequences u and
W, so that weither (i) for some <a> in VN, x = u<adw,
Y uvw, and <a> ::= v is a rule in P; or (ii) x = uw,
y uvw and v is a "comament" ({see below).

2. A sequence x 1is said to produce a sequence y if and
only if there exists an ordered set of sequences s[0]),
s{1), ««- » s[n)], so that x = s{0], s[n] =y, and s[i-1]

1.2 Definitions 9
directly produces s{i] for all i = 1, ... , n.

3. A segquence x is said to be an ALGOL W program if and
only if 1its constituents are members of the set VI, and x
can be produced from the syntactic entity <programd>.

The sets VT and VN - {|} are defined Through enumeration of
their members in Section 2 (cf. also 4.8). The syntactic rules
are given throughout sections 1 to 8. To provide explanrations for
the meaning of ALGOL W programs, lower case letter sequences used
in syntactic entities have been chosen to be English words
describing approximately the nature of the syntactic entity or
construct. Where words which have appeared in this manner are
used elsewhere in the text, they refer to the corresponding
syntactic definition. Along with these 1letter sequences the
symbol T or Tn, where n is a digit, may occur. It is understood
that this symbol must be replaced by any one of a finite set of
English words {or word pairs). Unless otherwise specified in the
particular section, all occurrences of the symbol T within one
syntactic rule must be replaced consistently, and the replacing
words are

integer logical
real bit
long~-real string
complex reference

long-complex
For example, the production
<T-expression-1> ::= <(T-expression-2> {cf.b)
corresponds to
<integer-expression-1>
<real-expression-1>
<long-real-expression-1>

<complex-expression-1>
<long-complex-expression-1>

<integer-expression-2>
{treal-expression-2>
<long~-real-expression-2>
<complex-expression-2>
<long-complex—-expression-2>

s 08 we sy A
TR D
oot o

The production

<Tl4-expression-8> ::= long <TS5-expression-8> {cf.6.3.1 and
6.3.2.7)

corresponds to
long <real-expression-8>

long <integer-expression-8>
long <complex-expression-8>

<long-real-expression-8> :
<long-real-expression-8> 3
<long-complex—expression-8> ::

il H

It is recognized that typographical entities exist of lover
order than basic symbols, <called characters. The accepted
characters are those of the IBM System 360 EBCDIC code.

The symbol comment followed by any sequence of characters
not containing semicolons, followed by a semicolon, is called a
conment. A comment has no effect on the meaning of a progran,

10 1.2 Definitions

and is ignored during execution of the progran. An identifier
(cf.3.1) immediately following the basic symbol end is also
regarded as a comment,

The execution of a program can be considered as a sequence
of units of action. The sequence of these units of action is
defined as the evaluation of expressions and the execution of
statements as denoted by the program. In the definition of the
implemented language the evaluation or execution of certain
constructs 1is either (1) defined by System 360 operations, e.g.,
real arithmetic, or (2) 1left undefined, e.g., the order of
evaluation of arithmetic primaries in expressions, or {3) said to
be not valid or not defined.

2 SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1 Basgic Symbols {(VN-{11})

A} B}l C|DJRBR]P] G| H}|]I{JI}JKILI] NI
N1 01 P1OITRY}ISITIU Y W I X1 Y 2

01 1] 2131815161 718109

true | false | ® | null | & | * |

integer | real | copplex | logical | bits | string |
reference | array | procedure | record |

eV 5 4t 21 <1 (1) | begin | end | if | then | else |
case lof V + 1 - { * { s/ | *+* | div | rem | shr | shl | is |
abs | 1ong | short | and 1 ot 1 ~ 1 _ 1 =1 ~=1 < |

<= 1 > > 1 25 |

:= | goto | go to | for | step | until | do | while |
comment | value | result | assert | algol | fortran

, A1l underlined words, which are called “reserved vords", are
represented by the same words in capital letters in an actual
program, with no intervening blanks. Adjacent reserved words,
identifiers (cf.3.1) and nunbers (cf.4.1) must include no blanks
and must be separated by at least one blank space. Othervise
blanks have no meaning and can be used freely to improve the
readability of the progranm.

2.2 Syntactic Entities 11

2.2 Syntactic Entities {(VT)

(vith corresponding section numbers)

.

<for-list>
<formal-array-parameter>
<forrmal-parameter-list>
<formal~-parameter-segment>!
<formal—-type>
<goto—statementd>

<substring-designator>
<T-array-declaration>
<T-array-designator>
<T-array-identifier>
{T-assignment-statement>
<T-block-expression>

[
[} [2 T

.
W W EUVNNJdwt @ O I ND b W TWWWWLAd LD E WL E -

<hex-digit> - <T-constant> 4.1-4.
<identifier> - <T-expression>
<identifier-list> <T-expression-i> 6~

[]
ot N ws - O~ N W N ad ed DN b &N O ws

<T-expression-list>
<T-field-designator>
<T-field-identifier>
<T-function—-designator>
<T-function-identifier>
<T-function-procedure-body>
<T-function-procedure-

<if-clause>
<if-statement)>
<imaginary-number>
{increment)>
<initial-value>
<input—-parameter-list>
<iterative-statement>

. 0 08 8
[I R]

<actual-parameter> «3 <procedure-statement)> 7.3
<actual-parameter-list> -3 <program> 7
<assert-statement> .8 <proper-procedure-body> 5.3
<bar> -1 <proper-procedure-declaration>5.3
<block-body> -1 <record-class-declaration> 5.4
<block-head> .1 <record-class-identifier> 3.1
<block> .1 <record-class-identifier-list>5.1
<bound-pair> .2 <record-designator> 6.7
<bound-pair-list> .2 <relation> 6.4
<case-clause> .8 <relational-operator> 6.4
{case-statenment> .6 <{scale-factor> 4.1
<character> -4 <sign> 4.1
<conditional-T-expression>6.8 <simple-statement> 7
<control-identifier> .1 <simple~-T-variable> v 6.1
<declaration> <simple-T-variable-declaration>
<digit> . 5.
<dimension-specification> 5. <standard-procedure-statement>7.
<empty> - {statement> 7
<equality-operator> - <{statement-listd> 7.
<expression-list)> - <string> 4.
<external-reference> - <subarray-designator-list> 7.
<field-list> - <subscript> 6
<for-clause> <subscript-list> 6.

6

5

6

3

7

6

4

6

6

6

6

3

6

3

5

ki S g G S g R Sk e Y Gl e SR sgngs RN N g Gh e GNAD AN o AN S g Gy A R TR i s SR i Gk S g G s e S e MRS Mea G G s e S e

<label-definition> . declaration> 5.3
<label-identifier> . <T-left-part> 7.2
<letter> - <T-subarray-designator> 7.3
<limit> - <T-type> 5.1
<lower-bound> . <T-variable> 6.1
<null-reference> - <{T-variable-identifier> 3.1
<open-string> - <transput-parameter-list> 7.9
<procedure-declaration> . <unscaled-real> 4.1
<procedure-heading> - <upper-bound> 5.2
<procedure-identifier> - <while-clause> 7.7

12
3 IDENTIFIERS
3.1 syntax

<identifier> ::= <letter> | <identifier> <letter> |
<identifier> <digit> | <identifier> _
<T-variable~-identifier> ::= <identifier>
<T-array-identifier> ::= <identifier>
<procedure-identifier> ::= <identifier>
<T-function-identifier> ::= <identifier>
<record-class-identifier> 2:= <identifier>
<T-field-identifier> :;:= <identifier>
<label-identifier> ::= <identifier>
<control-identifier> = <identifier>
<letter> :2:= A | B | { DIt E]F{ G} B} I
N} O } Q1 R S} TV O} V]
12131415161 718109
1:= {identifier> |
ntifier list> , <identifier>

c JJ K| L1HN]
P WlxX1Y |z

<digit> ::= 0 { 1
<identifier-list>
<ide

—— e e i i

Variables, arrays, procedures, record classes and record
fields are said to be guantities. 1Identifiers serve to identify
gquantities, or they stand as labels, formal parameters or control
identifiers. Identifiers have no inherent meaning, aad can be
chosen freely in the reference language. In an actual progranm a

reserved vord cannot be used as an identifier.

Every identifier used in a program must be defined. This is
achieved through

{a) a declaration (cf. Section 5), if the identifier
identifies a quantity. It is then said to denote that
quantity and to be a T variable identifier, T array
jdentifier, T procedure identifier, T function identifier,
record class identifier or T field 4identifier, where the
symbol T stands for the appropriate word reflecting the
type of the declared quantity;

{b) a label definition (cf.7.1), if the identifier stands as a
label. It is then said to be a label identifier;

{c) its occurrence in a formal parameter list (cf.5.3). It is
then said to be a formal parameter;

(d) its occurrence following the symbol for in a for clause
(cfE.7.7). It is then said to be a control identifier;

{e) its implicit declaration in the 1language. Standard
procedures, standard functions, and predefined variables
(cf. 7.9 and 8) may be considered to be declared in a block
containing the program.

The recognition of the definition of a given identifier is
determined by the following rules:

3.2 Semantics 13

Step 1. If the identifier is defined by a declaration of
a quantity or by its standing as a 1label within the
smallest block (cf.7.1) embracing a given occurrence of
that identifier, then it denotes that quantity or label. A
statement following a procedure heading (cf.5.3) or a for
clause {cf.7.7) is considered to be a block, as is a block
expression (cf.6).

Step 2. Otherwise, if that block is a procedure body and
if the given identifier is identical with a formal
parameter in the associated procedure heading, then it
stands as that formal parameter.

Step 3. Otherwise, if that block is preceded by a for
clause and the identifier 1is identical to the control
identifier of that for clause, then it stands as that
control identifier.

Othervise, these rules are applied considering the smallest
block embracing the block which has previously been considered.

If either step 1 or step 2 could lead to nmore thanm one
definition, then the identification is undefined.

The scope of a quantity, a label, a formal parameter, or a
control identifier is the set of statements in which occurrences
of an identifier may refer by the above rules to the definition
of that quantity, label, formal parameter or control identifier.

3.3 Exapmples

I

PERSON
ELDERSIBLING
X15, X20, X25
NEW_PAGE

14
4 VALUES AND TYPES

Constants and variables (cf.6.1) are said to possess a
value. The value of a constant is determined by the denotation
of the constant. In the language, all constants {except
references) have a reference denotation (cf.l4.1 - 4.4). The
value of a variable is the one most recently assigned to that
variable. A value is {recursively) defined as either a simple
value or a structured value (an ordered set of one or nmore
values). Every value 1is said to be of a certain type. The
following types of simple values are distinguished:

integer: the value is a 32 bit iateger,

real: the value is a 32 bit floating point number,

long real: the value is a 64 bit floating poiat number,

complex: the value is a complex number composed of two
numbers of type real,

long complex: the value is a complex number composed

of two long real numbers,

logical: the value is a logical value,
bits: the value is a linear sequence of 32 bits,
string: the value is a linear sequence of at least one and

at most 256 characters,
reference: the value is a reference to a record.

The following types of structured values are distinguished:

array: the value is a an ordered set of values, all of
identical type,
record: the value is an ordered set of values.

A procedure may yield a value, in which case it is said to
be a function procedure, or it may not yield a value, in which
case it is called a proper procedure. The value of a function
procedure is defined as the value which results from the
execution of the procedure body {cf.6.2.2).

Subsequently, the reference denotation of constants is
defined. The reference denotation of any constant coansists of a
sequence of characters. This, hovever, does not imply that the
value of the denoted constant is a sequence of characters, nor
that it has the properties of a sequence of characters, except,
of course, in the case of strings.

4.1 Numbers

——— s e . et

4.1.1 Syntax

<long-complex—-constant> ::= <complex-constantd>L

<complex-constant)> ::= <imaginary-constant>

<imaginary-constant> ::= <real-constant>I |
<integer-constant>I

<long-real-constant> ::= <real-constant>L |
<integer-constant>L

<real-constant> ::= <unscaled-real> |
<unscaled-real><scale-factor> |
<integer-constant><scale-factor> |
<scale-factor>

4.1 Numbers 15

<unscaled-real> ::= <integer-constant>.<integer-constant> |
.<integer-constant> | <integer-constant> .

<scale-factor> ::= '<integer-constant> |
t<{sign><integer-constant>

<integer-constant> ::= <digit> | <integer-constant><digit>

<signd> ::= + | -

4.1.2 Semantics

Arithmetic constants are numbers interpreted according to
the conventional decimal notation. A scale factor denotes an
integral power of 10 which is multiplied by the unscaled real or
integer number preceding it. EBach number has a uniguely defined
type. {(Note that all <T-constantd>s are unsigned.)

4.1.3 Exanples

1 -5 11

0100 13 0.671
3.1416 6.02486'+23 ' 1IL
2.718281828459045L 2.3'-6

4.2 Logical Values
4.2.1 Syntax

<logical-constant> ::=

ﬂ
]
15
)
-
e
lo

<bit-constant> ::= # <hex-digit> |
<bit-constant><hex digit>
<hex-digit> ::= 0 | 1} 2|1 3 441 5161718149
A{B}jJC4§{IDYV}JVVELPF
Note that 2 | ... | F correspond to 2 | o= 1 15 -
10 10

4.3.2 Semantics

The number of bits in a bit constant is 32 or 8 hex digits.
The bit constant is alvays represented by a 32 bit word with the
specified sequence of bits right justified in the word and zeros
filled in on the left.

4.3.3 Examples

0000 0000 0000 0000 0000 0000 0100 1111
0000 0000 0000 0000 0000 0000 0000 1001

E o
&=
ry
([}

4.4.1 Syntax

<{string-constant> ::= <string>
<string> ::= "<open-stringd>"
<open-string> ::= <character> | <open-string><{character>

16 4.4 Strings
4.4.2 Semantics

Strings consist of any sequence of (at least one and at most
256) characters accepted by the System 360 enclosed by ", the

string quote. If the string guote appears in the sequence of
characters it must be immediately followed by a second string
gquote which 1is then 1ignored. The number of characters in a

string is said to be the length of the string. The characters
accepted by the IBM System 360 are listed in Appendix I.

4.4.3 Exanmples

ﬂJOHN"

nunn jg the string of length 1 consisting of the string
quote.

4.5 BReferences

4.5.1 Syntax
<reference-constant> ::= null
4.5.2 Semantics
The reference value null fails to designate a record; if a

reference expression occurring in a field designator {cf.6.1) has
this value, then the field designator is undefined. '

17
5 DECLARATIONS

Declarations serve to associate identifiers with the
quantities used in the program, to attribute certain permanent
properties to these gquantities (e.g type, structure), and to
determine their scope. The quantities declared by declarations
are simple variables, arrays, procedures and record classes.

Upon exit from a block, all quantities declared or defined
within that block lose their value and significance (cf. Te 1.2
and 7.4.2).

Syntax:

<declaration> ::= <simple-T-variable-declaration> |
<T-array-declaration> | <procedure-declaration> |
<record-class-declaration>

5.1 Simple Variable Declarations

5.1.1 Syntax

<simple-T-variable-declaration> ::= <T-type><identifier-list>

<integer-type> ::= integer

<real-type> ::= real

<long-real-type> ::= long real

<complex-typed> ::= cgmplex

<long-complex—-typed> o

<logical-typa> 11

<bits-type> :1:= b

<{string-type> ::

<reference-type> ::
reference (<record-class-identifier-list))

<record-class—identifier-list> ::= <record-class-identifier>|
<record-class-identifier-listd>,<record-class-identifier>

s (32)
| string (<integer-constant))

5.1.2 Semantics

Bach identifier of the identifier list is associated with a

variable which is declared to be of the 1indicated type. A
variable is called a simple variable, if its value is simple {(cf.
Section u4). If a variable is declared to be of a certain type,

then this implies that only values which are assignnent
compatible with this type {cf. 7.2.2) can be assigned to it. It
is understood that the value of a variable is equal to the value
of the expression most recently assigned to it.

A variable of type bits is alvays of length 32 whether or
not the declaration specification is included.

A variable of type string has a length egqual to the unsigned
integer in the declaration specification. The value of this
integer may not be less than 1 or greater than 256. If the
simple type 1is given only as string, the length of the variable
is 16 characters.

A variable of type reference may refer only to records of
the record classes whose identifiers appear in the record class

18 5.1 Simple Variable Declarations
identifier list of the reference declaration specification.
5.1.3 Exanmples

integer I, J, K, M, N

real X, Y, Z
long complex C

bits G, H
string (10) s, T
reference (PERSON) JACK, JILL

—— e, . ek iy

5.2 Array Declarations
5.2.1 Syntax

<T-array-declaration> ::= <T-type> array <identifier-list>
(<{bound-pair-list>)

<bound-pair-list> ::= <bound-pair> |
<bound-pair-list>,<bound-pair>

<bound-paird> ::= <lower-bound> :: <upper-bound>

<lowver-bound> ::= <integer-expression>

<upper-bound> ::= <integer-expressiond>

Wi

5.2.2 Semantics

Fach identifier of the identifier 1list of an array
declaration is associated with a variable which is declared to be
of type array. A variable of type array is an ordered set of
variables wvhose type is the type preceding the symbol array. The
dimension of the array is the number of entries in the bound pair
list.

_ Every element of an array is identified by a 1list of
indices. The indices are the integers between and including the
values of the lower bound and the upper bound. FEvery expression
in the bound pair list is evaluated exactly once upon entry to
the block in which the declaration occurs. The bound pair
expressions can depend only on variables and procedures global to
the block in which the declaration occurs. If, for any bound
pair, the value of the upper bound is less than the value of the
lower bound, the array has no elements.

5.2.3 Examples
integer array H{1::100)

real array A, B{1::4, 1::0N)
string (12) array STREET, TOWN, CITY (J::K + 1)

5.3 Procedure Declarations

5.3.1 Syntax

<procedure-declaration> ::= <proper-procedure-declaration> |
<T-function-procedure-declaration>

<proper-procedure~-declaration> ::= procedure
<procedure-heading>; <proper-procedure-body>

<T0-function-procedure-declaration> ::=

5.3 Procedure Declarations 19

— i . s i it e i

<T1-function-procedure—-body>
<proper-procedure-body> ::= <statement> |
<external-reference>
<T-function-procedure-body> ::= <T-expression> |
<external-reference>
<procedure-heading> ::= <identifier> |
<identifier> (<formal-parameter-list))
<formal-parameter-listd> ::= <formal-parameter-segment> |
<formal-parameter-list>;<formal-parameter-segment>
<formal-parameter-segment> ::= <formal-array-parameter> |
<formal-type><identifier-list>
<formal-type> ::= <T-type> | <T-type> value |
<T-type> result | <T-type> value result |
<T-type> procedure | procedure
{formal-array-parameter> ::= <T-type> array
<identifier-list> (<dimension-specificationd)
<dimension-specification> ::= * |
<dimension-specification> , *
<external-reference> ::= fortran <string> | algol <string>

5.3.2 Semantics

A procedure declaration associates the procedure body with
the identifier immediately following the symbol procedure. The
principal part of the procedure declaration is the procedure
body. Other parts of the block in wvhose heading the procedure is
declared can then cause this procedure body to be executed or
evaluated. A proper procedure 1is activated by a procedure
statement (cf.7.3), a function procedure by a function designator
{cf.6.2). Associated with the procedure body is a heading
containing the procedure identifier and possibly a list of formal
parameters. The type of a functiom procedure body, T1, must be
assignment compatible (cf.7.2.2) with the type, TO, of the
procedure. :

5.3.2.1 Type specification of formal parameters. All formal
parameters of a formal parameter segment are of the same
indicated type. The type must be such that the replacement of
the formal parameter by the actual parameter of this specified
type leads to correct ALGOL W expressions and statements
(cf.7.3.2).

5.3.2.2 The effect of the symbols value and result appearing in
a formal type 1is explained by the folloving rule, which is
applied to the procedure body before the procedure is invoked:

{1) The procedure body is enclosed by the symbols begin and
end;
{2) For every formal parameter whose formal type contains the
symbol value or result (or both),
{a) a declaration followed by a semicolon is inserted
after the first beqgin of the procedure body, with
a type as indicated in the formal type, and with
an identifier different from any identifier valid
at the place of the declaration;
{b) throughout the procedure body, every occurrence of

ke s S gy, ittt it

20 5.3 Procedure Declarations

the formal parameter identifier is replaced by the
identifier defined in step 2a;

(3) If the formal type contains the symbol value, an assignment
statement {cf.7.2) followed by a semicolon is inserted
after the declarations in the outermost block of the
procedure body. Its left part contains the identifier
defined in step 2a, and its expression consists of the
formal parameter identifier. The symbol yalue 1is then
deleted;

(4y I1If the formal type contains the symbol result, an
assignment statement preceded by a semicolon is inserted
before the symbol end which terminates the procedure body.
Its left part contains the formal parameter identifier, and
its expression consists of the identifier defined in step
2a. The symbol result is then deleted.

5.3.2.3 Specification of array dimensions. The number of "#"'s
appearing in the formal array specification is the dimension of
the array parameter.

5.3.2.4 External references. Use of an external reference as a
procedure body indicates that the actual procedure body is
specified by the environment in which the program is to be
executed. The information in the external refereace is used to
locate and interpret that procedure body. The details of such
use depend upon the specific environment. (cf. 9.6, 10.3 and
11.3)

5.3.3 Examples

o o i wa a s

real procedure MAX (
if X < Y then Y else X

procedure COPY (real array U, V{*,*); integer value A, B);

§g§ I := 1. until A do
for J := 1 until B do U(IL,Jd) := V(I,J)

real procedure HORNER (real array A{(*); integer yvalue N:
real value X);
S;

beqin real
for I :
S

:= 0
step -1 until 0 do 5 := 35 * X + A(I);

1]

nd

long real procedure SUM (integer K, N; long real X);

begin long real ¥; Y := 0; K := N;
while K >= 1 do
begin Y := Y ¢+ X; K 2= K - 1
end;
Y

. < s <. <o o

5.3 Procedure Declarations 21

begin reference (PERSON) P, M;
P := YOUNGESTOFFSPRING (FATHER (FATHER {(R)));

while P~= pull and -~ MALE (P) or

P = FATHER (R) do
P := ELDERSIBLING (P);
M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R))):
while M -~= null and ~ MALE (M) do
M:= ELDERSIBLING (M)
if P = pull then M else
if M = pull then P else
if AGE{P) < AGE(M) then P else M

end

procedure PLOTSUBROUTINE {(integer value I); fortran "PLOTSB"

5.4 Record Class Declarations

S.4.1 Syntax

<record-class-declaration> ::=

<field-list> ::= <simple-T-variable-declaration> |}
<field-list>; <simple-T-variable-declaration>

S.4.2 Semantics

A record class declaration serves to define the structural
properties of records belonging to the class. The principal
constituent of a record class declaration is a segquence of simple
variable declarations which define the fields and their types for
the records of this c¢lass and associate identifiers with the
individual fields. A record class identifier can be used in a
record designator (cf. 6.7) to construct a new record of the

given class.
5.4.3 Examples
record NODE (reference (NODE) LEFT, RIGHT)

record PERSON (string NAME; integer AGE; logical MALE;
reference (PERSON) FATHER, MOTHER, YOUNGESTOFF¥SPRING,

s e, o, < s s WS

ELDERSIBLING)

—— o — p— A — -~ it - —— iy D gyl Gt WA

e M M bl S i, W it it

22
6. EXPRESSIONS

Expressions are rules which specify hovw new values are
computed from existing ones. These new values are obtained by
performing the operations indicated by the operators on the
values of the operands. The operands are either constants,
variables or function designators, or other expressions, enclosed
by parentheses if necessary. The evaluation of operands other
than constants may involve smaller units of action such as the
evaluation of other expressions or the execution of statements.
The value of an expression between parentheses is obtained by
evaluating that expression. If an opetrator has two operands,
then these operands may be evaluated in any order with the
exception of the 1logical operators discussed in 6.4.2.2.
Expressions are distinguished by a type and a precedence level,
the former depending on the types of the operands and the latter
resulting from the precedence hierarchy imposed upon operators in
the syntactic rules which follow. The syntactic entities naming
different kinds of expression in these rules display these
attributes, the word "expression® being prefixed by a type and,
usually, postfixed by an integer indicating the precedence level.
{(Higher precedence is implied by increasing magnitude of this
integer). The operators and their precedence levels are:

level operators
1 or
2 and
3 -
4 < <= = 2= >= > is
5 + -
6 * s div rem
7 shl shr *#
8 long short abs

When the types allow an operator at level i to be applied to
operands, the resulting expression, wvhich belongs to the
syntactic class <T-expression-i>, has the intuitive meaning given
in the second column of the table.

Syntactic Entity Meaning Definitions
<T-expression-1> disjunction 6, 6.4, 6.5
<T-expression-2> conjunction 6, 6.4, 6.5
{T-expression-3> negation 6, 6.4, 6.5
{T-expression-4> relation 6, 6.4
<T-expression-5> sunm 6, 6.3
<T-expression-6> tern 6, 6.3
{T-expression-7> factor 6, 6.3, 6.5
{T-expression-8> primary 6, 6.3, 6.7

The third column of the table indicates sections where
definiticns of these syntactic entities occur.

Throughout section 6 and its subsections the symbol T has to
be replaced consistently as described 1im Section 1 and the
triplets T0, T1, T2 have to be either all three replaced by the
same one of the words

e iy, R Qs ool gy T LS g M gy o it

L

— i

- oy, i Wi

23

logical
bit
string
reference

or (subject to specification to the contrary) in accordance with
the following "triplet rules".

1. Given the qualities (integer, real or complex) of T1 and
T2, the corresponding quality of T0 is given in the table

T2 | integer real complex
I1 1
integer { integer real : complex
real { real Teal complex
complex | complex coekplex complex
2. TO0 has the quality "long"™ either if both T1 and T2 have

that quality, or if one has the gquality *long" and the
other is "integer".

Syntax:

<T-expression> ::= <T-expression-1> |
<conditional-T-expression>
<T-expression-1> <T-expression-2>
<T-expression-2> <T-expression-3>
<T-expression-3> <{T-expression-4>
{T-expression—4> <T-expression-5>
<T-expression-5> {T-expression-6>
{T-expression-6> {T-expression-7>
<T-expression-7> {T-expression-8>
<T-expression-8> {T-variable> |
<T~funct10n—de31gnator> i <T-constant> |
(<T-expression>) | <T-block-expressiond>
<T-block-expression> ::= <block body><T-expression> end

30 S0 08 g3 8% a0 9
4 88 43 g0 8% 48 es

O (I T T O | T O

Semantics:

There are 8 levels of precedence; an expression at one level
of precedence 1is a valid expression at each lower level of
precedence.

A block expression introduces a new level of nomenclature
and specifies the execution of a seguence of statements.in the
block body as described for blocks (cf.7.1). After execution of
the block body, the final expression is evaluated and the value
of that expression becomes the value of the entire block
expression.

Variables, function designators and conditional expressions
are defined in subsegquent paragraphs of section 6.

6.1 Jdariables

6.1.1 Syntax

<simple-T-variable> ::= <T-variable-identifier> |

24 6.1 Variables

<T-field-designator> | <T-array-designator>
<T-variable> ::= <simple-T-variable>
<string-variable> ::= <substring-designator>
<T-field~designator> ::= <T-field-identifier>
(<reference—expressiond)
<T-array-designator> ::= <T-array-identifier>
{<subscript-list>)
<sukscript-list> ::= <subscript> |
<subscript-1list> , <subscript>
<subscript> ::= <integer-expressiond>

6.1.2 Semantics

An array designator denotes the variable whose indices are
the current values of the expressions in the subscript list. The
value of each subscript must lie within the declared bounds for
that subscript position.

A field designator designates a field in the record referred
to by its reference expression., The type of the field designator
is defined by the declaration of that field identifier in the
record class designated by the reference expression of the field
designator {cf. 5.4).

6.1.3 PExamples

X A(T) M{I+K,I-J)
FATHER (JACK) MOTHER (PATHER (JILL))

6.2 Punction Designators

6.2.1 Syntax

<T-function-designator> ::= <T-function-identifier> |
<T-function-identifier> (<actual-parameter-list)>)

6.2.2 Semantics

A function designator defines a value which can be obtained
by a process performed in the following steps:

Step 1. A copy 1is made of the body of the function procedure
vhose procedure identifier is gqiven by the function
designator and of the actual parameters of the latter.

Steps 2, 3, 4. As specified in 7.3.2.

Step 5. The copy of the function procedure body, modified as
indicated in steps 2-4, is executed. Execution of the
expression which constitutes or is part of the modified
procedure body consists of evaluation .of that
expression, and the resulting value is the value of the
function designator. The type of the function
designator is the type in the corresponding function
procedure declaration.

6.2 Function Designators 25

6.2.3 Examples

MAX (X *% 2, Y *% 2) soM(I, 100, H({I))
YOUNGESTUNCLE (JILL) SOM (I, ®, SUM(J, N, A(I,d)))
HORNER (X, 10, 2.7) SUM(I, 10, X(I) * Y(I))

6.3 Arithmetic Expressions

$.3.1 Syntax

<T3-expression-5> ::= + <T3—-expression-6> |
- <T3-expression-6>
{T0-expression-5> ::= <Tl-expression-5> ¢ <T2-expression-6> |
<Ti-expression-5> - <T2-expression-6>
<T0-expression-6> :1:= <T1-expression-6> * <T2-expression-7> |
<T1-expression-6> / <T2-expression-7>
<integer-expression-6> ::=
<integer—expression-6> div <integer-expression-7> |
<integer-expression-6> rem <integer-expression-7>
{Th-expression-7> z:=
<T5-expression~7> ** <integer-expression-8>
<T4-expression-8> ::= abs <TS5-expression-8> |
long <TS5-expression-8> | short <T5-expression-8>
<integer-expression-8> ::= <control-identifier>

$6.3.2 Semantics

An arithmetic expression is a rule for computing a number.
According to its type it is called an integer expression, real
expression, long real expression, complex expression, or 1long
complex expression.

6.3.2.1 The operators +, -, ¥, and / have the conventional
meanings of addition, subtraction, multiplication and division.

For the operator *, the second "triplet rule® is modified so
that TO has the quality long unless both T1 and T2 are integer.

For the operator /, the "triplet rules"™ apply except when
both T1 and T2 are integer, them TO is long-real.

6.3.2.2 The operator "-" standing as the first symbol of an
expression at priority level 5 denotes the monadic operation of
sign inversion. The type of the result is the type of the
operand. The operator "+" standing as the first syabol of such
an expression denotes the monadic operation of identity.

In the relevant syntactic rules of 6.3.1, every occurrence
of the symbol T3 must be systematically replaced by one of the
following words (or word pairs):

integer

real
long-real
complex
long-complex

6.3.2.3 The operator div is defined (for B -= 0) as

o i

26 6.3 Arithmetic Expressions

A

[»1]

iv B = SGN (A * B) * D {abs A, abs B) (cf. 6.3.2.6)
where the fuction procedures SGN and D are declared as

integer procdure
if A <

value 1A);
’

integer procedure D (integer value A, B):
if A < B then O else D{A-B, B) + 1

6.3.2.4 The operator rem (remainder) is defined as
A rem B =A - (A div B) * B

6.3.2.5 The operator ** dJdenotes exponentiation of the first
operand to the power of the second operand. In the relevant
syntactic rule of 6.3.1 the symbols T4 and T5 are to be replaced
by any of the following combinations of words:

T4 } T5

1
long-real { integer
long-real | real
long—-complex) complex

T4 has the quality "long" wvhether or not TS5 does.

6.3.2.6 The monadic operator abs yields the absolute value or
modulus of the operand. In the relevant syntactic rule of 6.3.1
the symbols T4 and TS5 have to be replaced by any of the following
combinations of words:

T4 1 T5

1
integer { integer
real ! real
real { conplex

If T5 has the quality "long", then so does Td.

6.3.2.7 Precision of arithmetic. If the result of an arithmetic
operation is of type real, complex, long real, or lopg cosplex,
its value is defined by System/360 arithmetic and 1is the
mathematically understood result of the operation performed on
operands which may deviate from actual operands.

In the relevant syntactic rules of 6.3.1 the symbols T4 and
TS5 must ke replaced by any of the following combinations of words
(or word pairs):

Operator long

T4 | T5

1
long-real i real
long-real { integer
long-complex | complex

o S oy, W gt SO A, IS s U

6.3 Arithmetic Expressions 27

Operator short

T4 i T5

1
real 1 long-real
complex } long-complex

Note: It is illegal to apply lomng to an expression which is

- —

already long; similarly for short.
6.3.3 Exanmples

C +A(I) * B(I)
EXP(~-X/(2 * SIGMA)) / SQRT(2 * SIGMA)

6.4 Logical Expressions

6.4.1 Syntax

In the following rules for <relation> the symbols T6 and T7
must either be identically replaced by any one of the following
words:

bit
string
reference

or by any of the words from:

complex
long-complex
real
long~real
integer

and the symbols T8 or T9 must be identically replaced by string
or must be replaced by any of real, long-real, integer.

<logical-expression-1> ::=
<logical-expression-1> or <logical-expression-2>
<logical-expression-2> ::=
<logical-expression-2> apd <logical-expression-3>
<logical-expression-3> ::= -~ <logical-expression-i#>
<logical-expression-4> ::= <relatioa>
<relation> ::=
<T6-expression-5><equality-operator><T7-expressioa-5> |
{T8-expression-5><inequality-operator><T9-expression-5> |
<reference-expression-5> is <record-class-identifier)>
<eguality-operator> ::= =
<inequality-operator> ::= < | <= }{| >= | >

I ~=

$.4.2 Semantics

A logical expression is a rule for computing a logical
value.

6.4.2.1 The relational operators represent algebraic ordering
for arithmetic arguments and EBCDIC ordering for string

i S

28 6.4 Logical Rxpressions

arguments. If two strings of unequal length are compared, the
shorter string is considered to be extended to the length of the
longer (for the comparison only) by appending blanks to the
right. The relational operators yield the logical value true if
the relation is satisfied for the values of the two operands;
false otherwise. Two references are equal if and only if they
are both null or both refer to the same record. The operator is
yields the 1logical value true if the reference expression
designhates a record of the 1indicated record class; false
othervise. The reference value null fails to designate a record
of any record class.

6.4.2.2 The operators -~ {(not), and, and or, operating on logical
values, are defined by the following egquivaleances:

- X if X then false else true
X and Y if X then Y else false
X or Y if X then true else Y

6.4.3 Examples

P or Q
X < Yand Y < 3
YOUNGESTOFFSPRING (JACK) -= null
FATHER (JILL) is PERSON

6.5 Bit Expressions

6.5.1 Syatax

<bit-expression-1> ::=
<bit-expression-1> or <bit-expression-2>
<bit-expression-2> ::=
<bit-expression-2> apd <bit-expression-3>
<bit-expression-3> ::= -~ <bit-expression-4>
<bit-expression-7> 3::=
<bit-expression-7> shl <integer-expression-8> |
<bit-expression-7> shr <integer—expression-8>

6.5.2 Semantics
A bit expression is a rule for computing a bit sequeace.
The operators and, or, and - produce a result of type bits,

every bit being dependent on the corresponding bit(s) in the
operand (s) as follows:

X Y } -X X and Y Xor¥Y
]
1

0 0 | 1 0 0

0 1 i 1 0 1

1 0) 0 0 1

1 1 | 0 1 1

The operators shl and shr denote the shifting operation to
the left and to the right respectively by the number of bit
positions indicated by the absolute value of the integer operand.

6.5 Bit Expressions 29

Vacated bit positions to the right or left respectively are
assigned the bit value 0.

6.5.3 Examples

G

H or %38
G -

)}
n (H or G) shr 8

I I
o few

6.6 String Expressions

6.6.1 Syntax

<substring-designator> ::= <string-variable>
{<integer-expression><bar><integer-constant>)

6.6.2 Semantics

A string expression is a rule for «computing a string
{sequence of characters).

6.6.2.1 A substring designator denotes a sequence of characters
of the string designated by the string variable. The integer
expression preceding the bar selects the starting character of
the sequence. The value of the expression indicates the position
in the string variable. The value must be greater tham or egual
to 0 and 1less than the declared length of the string variable.
The first character of the string has position 0. The integer
number following the bar indicates the length of the selected
sequence and is the length of the string expression. The sum of
the 1integer expression and the integer number must be less than
or equal to the declared length of the string variable.

6.6.3 Examples

S{413)

S(I+J}1)

STREET (J+1) (I11)

NAME (FATHER (JACK)) (018)

6.7 Reference Expressions

6.7.1 Syntax

<reference-expression-8> ::= <record-designator>
<record-designator> ::= <record-class-identifier> |
<record-class-identifier> (<expression-listd)}
<expression-list> ::= <empty> { <T-expressiond> |
<expression-list>, |
<expression-list> , <T-expressioa>

6.7.2 Semantics

A reference expression is a rule for computing a reference
to a record.

The value of a record designator is the reference to a newvly
created record belonging to the designated record class. If the
record designator contains an expression list, then the length of

- -

30 6.7 Reference Expressions

the list must egqual the number of fields specified in the record
class declaration. Vvalues of nonempty expressions in the
expression list are assigned tc the corresponding fields of the
new record, and the types of the expressions must be assignment
compatible with the types of the record fields (cf. 7.2.2).

6.7.3 Examples
PERSCN ("JANE", 0, false, JACK, JILL, null, YOUNGESTOFFSPRING
{JACK))
NODE (, null)

6.8 Conditional Expressions

6.8.1 Syntax

<conditional-T-expression> ::=

<{case-clause> (<{T-expression-list))
<conditional-TO0-expressiond> ::=

<if-clause> <T1-expression> else <T2-expression>
<T-expression-list> ::= <T-expression>
<T0-expression-1list> ::=

<T1-expression-list> , <T2-expression>
<if-clause> ::= if <logical-expression> then
<case-clause> ::= case <integer-expression> of

6.8.2 Semantics
The construction
<if-clause> <T1-expression> else <T2-expression>

causes the selection and evaluation of an expressiona on the basis
of the current value of the logical expression contained in the
if clause. If this value is true, the expression following the
if clause is selected; if the value is false, the. expression
following else is selected. If T1 and T2 are type string, the
length of the resulting expression is the maximum of the 1lengths
of the coamponent string expressions; if necessary, blanks are
appended on the right of the shorter string. The coastruction

<case-clause> (<T-expression-list))

causes the selection of the expression vhose ordinal nusber in
the expression list is egqual to the curreat value of the integer
expression contained in the case clause. 1In order that the case
expression be defined, the current value of this expression must
be the ordinal number of some expression in the expression list.
If T is type string, the 1length of the resulting string
expression is the maximum of the lengths of the strings in the
expression list. If necessary, the length of any shorter element
is increased by appending blanks on the right.

6.8.3 Examples

if A>B then A else B
case I of ("SPADES"™,"HEARTS","DIAMONDS","CLUBS")

31

7 STATEMENTS

A statement denotes a unit of action. By the execution of a

statement is meant the performance of this unit of action, which
may consist of smaller units of action such as the evaluation of
expressions or the execution of other statements.

Syntax:

<program> ::= <{statementd>. |

<proper—-procedure-declaration>. |
<T-function-procedure-declaration>.

<{statement> ::= <simple-statement> | <iterative-statement> |

<if-statement> | <case-statementd>

<simple-statement> ::= <block> | <T-assignment-statement)> |

<procedure-statement> | <goto-statementd> |
<standard-procedure-statement> |
<assert-stateaent> | <empty>

Programs which are procedure declarations cannot be executed

directly, but the corresponding procedure bodies can form part of

the
{cf.

71

7.1.1

environment in which other ALGOL ¥ programs are executed
5.3, 2.4, 9.6, 10.3 and 11.3)

Blocks

Syntax

<block> ::= <block-body> <statement> end
<block-body> ::= <block-head> | <block-body> <statement> ; |

<block-body> <label-definition>

<block-head> ::= begin] <block-head> <declaration> ;
<label-definition> ::= <identifier> :

7.1.2

Semantics

Every block introduces a new level of nomenclature. This is

realized by execution of the block in the following steps:

Step 1. If an identifier, say A, defined in the block head
or in a label definition of the block body is already
defined at the place from which the block is entered, then
every occurrence of that identifier, A, within the block
except for occurrence in array bound expressions is
systematically replaced by another identifier, say A’',
vhich is defined neither within the block nor at the place
from which the block is entered.

Step 2. If the declarations of the block contain array
bound expressions, then these expressions are evaluated.

Step 3. Execution of the statements contained in the block
body begins with the execution of the first statement
following the block head.

After execution of the last statement of the block {unless

it is a goto =statement leading to a label within the block) a
block exit occurs, and the statement following the entire block

32 7.1 Blocks
is executed.
7.1.3 Example

begin real U;
g := ¥%; X 2= ¥; Y == 2; Z 2= 4

end

7.2 Assignment Statements

7.2.17 Syntax

In the following rules the syabols T0 and T1 must be
replaced by words which may be substituted for T as indicated in
Section 1, subject to the restriction that the type T1 must be
assignment compatible with the type TO as defined in 7.2.2.

<TO0-assignment-statement> ::= <T0-left-part><Tt-expression> |
<TO0-left-part><{Tl1-assignment-statement>
<T-left-part> ::= <T-variabled> :=

7.2.2 Semantics
The execution of a simple assignment statement
<T0-left-part><{T1-expression>

causes the assignment of the value of the expression to the
variable. 1If a shorter string is to be assigned to a longer one,
"the shorter string is first extended to the right with blanks
until the lengths are equal. In a multiple assignment statement

<T0-left-part> <T1l-assignment-statenment>

the assignments are performed from right to left. Por each left
part variable, the type of the expression or assignment variable
immediately to the right must be assignment compatible with the
type of that variable.

A type T1 is said to be assignment compatible with a type TO
if either

{1) the twvwo types are identical (except that if T0 and T1 are
string, the length of the T0 variable must be greater than
or equal to the length of the T1 expression or assignament),
or

{(2) T0O is real or long real, and T1 is integer, real or long
real or

{3) T0 is complex or long complex, and T1 is jipnteger, real,
long real, complex or long complex.

In the case of a reference, the reference to be assigned
must be null or refer to a record of one of the classes specified
by the record class identifiers associated with the reference
variable in its declaration.

7.2.3
Z
X

7.3

7.2 Assignment Statements 33

Examples
:= AGE (JACK) := 28 C:=1+X +C
:= Y + abs 2 P 2= X ~= Y

Procedure Statements

7.3.1

<

<

<

Syntax

procedure-statement> ::= <procedure-identifier> |
<procedure-identifier> (<actual-parameter-list>)

actual-parameter-list> ::= <actual-parameter> |
<actual-parameter-list> , <actual-parameter>

actual-parameter> ::= <T-expression> | <statement)> |
<T-subarray-designator> | <procedure-identifier> |
<T-function-identifier>

<T-subarray-designator> ::= <T-array-ideatifier> |

<T-array-identifier> {<subarray-designator-list)>)

<subarray-designator-list> ::= <subscript> | * |

7.3.2

<subarray-designator-list>,<{subscript> |
<{subarray-designator-list>,*

Semantics

The execution of a procedure statement is eguivalent to a

process performed in the following steps:

Step 1. A copy is made of the body of the proper procedure
whose procedure identifier is given by the procedure
statement, and of the actual parameters of the latter. The
procedure statement 1is replaced by the copy of the
procedure body.

Step 2. If the procedure body is a block, then a
systematic change of identifiers in its copy is performed
as specified by step 1 of 7.1.2.

Step 3. The copies of the actual parameters are treated in
an undefined order as follows: If the copy is an expression
different from a variable, then it is enclosed by a pair of
parentheses, or if it is a statement it is enclosed by the
symbols begin and end. 1In each subarray desigmator, any
subscripts are evaluated and replaced by constants
designating the resulting values.

Step 4. In the copy of the procedure body every occurrence
of an identifier identifying a formal parameter is replaced
by the copy of the corresponding actual parameter (cf.
7.3.2.1). In order for the process to be defined, these
replacements must lead to correct ALGOL ¥ expressions and
statements, -

Step 5. The <copy of the procedure body, modified as
indicated in steps 2-4, is executed.

7.3.2.1 Actual-formal correspondence. The correspondence
between the actual parameters and the formal parameters is
established as follows. The actual paraseter 1list of ‘the

34 7.3 Procedure Statenments

procedure statement (or of the function designator) must have the
same number of entries as the formal parameter 1list of the
procedure declaration heading. The correspondence is obtained by
taking the entries of these two lists in the same order.

7.3.2.2 The folloving table summarises the forms of actual
parameters which may be substituted for each kind of formal
parameter specification.

Formal_type 1 Actual parameter
|
<T-type> | {T-expression>
|
<T0-type> value 1 <T1-expression>
|
<T1-type> result i <T0-variatled>
{
<T1-type> value result i {T2-variable>
: |
<T-type> procedure 1 <T-function-identifier>
| {T-expression>
1
procedure | <procedure-identifier>
1 <statenment>
|
|

<T-type> array <T-subarray-designator>
The ¢type T1 must be assignment compatible with the type TO0. The
types T1 and T2 must be mutually assignment compatible.

7.3.2.3 Subarray designators. A complete array may be passed to
a procedure by specifying the name of the array if the number of
subscripts of the actual parameter equals the number of
subscripts of the corresponding formal parameter. If the actual
array parameter has more subscripts thanm the corresponding formal
parameter, enough subscripts must be specified by integer
expressions so that the number of *'s appearing in the subarray
designator equals the number of subscripts of the corresponding
formal parameter. The subscript positions of the formal array
designator are matched with the positions with *'s in the
subarray designator in the order they appear.

7-.3.3 Examples

INCREMERT

COPY (A, B, M, N)

INNERPRODOCT{IP, N, A{I,*), B(*,J))
7.4 Goto Statments

7.4.1 Syntax

<goto-statement> ::= gotg <label-identifier> |
go to <label-identifier>

7.4.2 Semantics

An identifier is a label identifier if it stands as a label.

7.4 Goto Statements 35

A goto statement determines that execution of the text be
continued after the label definition of the label identifier.
The identification of that label definition 1is accomplished in
the following steps:

Step 1. If some label definition within the most recently
activated but not yet terminated block contains the label
identifier, then this is the designated label definition.
Otherwise,

Step 2. The execution of that block is considered as
terminated and Step 1 is taken as specified above.

Note: There is only one definition of a valid
label. (cf. 7.1.2)

7.5 1If Statements
7.5.1 Syntax
<if-statement> ::= <if-clause><{statement> |
<if-clause><{simple-statement> else <statement>
<if-clause> := if <logical-expression> then

7.5.2 Semantics

The execution of if statements causes certain statements to
be executed or skipped depending on the values of specified
logical expressions. An if statement of the form

<if-clause><{statement>
is executed in the following steps:

Step 1. The 1logical expression in the if clause is
evaluated.

Step 2. If the result of Step 1 is ¢true, then the
statement following the if clause is executed. Othervise
step 2 causes no action to be taken at all.
An if statement of the form

<if-clause><{simple-statement> else <statementd>

is executed in the following steps:

Step 1. The logical expression im the if «clause is
evaluated.

Step 2. If the result of step 1 is true, then the simple
statement following the if clause is executed. Otherwise
the statement following else is executed.

7.5.3 Examples

fie e
I iFn

X = Y then
X < Y then

ca

10
o icr
Iio
Ll

NN
{o
“
o
:l-‘
rh
-
A
~
i
®
=]
<3
(1]
il
4
o
7]
o
<
[1]
i
3

36 7.6 Case Statements

7.6 Case Statements

7.6.1 Syntax

<case-statementd> ::= <case-clause> begin <statement-list> end

<statement-list> ::= <statementd> |
<statement-list>;<{statement>

<case-clause> ::= case <integer-expressiond> of

7.6.2 Semantics
Fxecution of a case statement proceeds in the following steps:
Step 1. The expression of the case clause is evaluated.

Step 2. The statement whose ordinal number in the statement
list is equal to the value obtained in Step 1 is executed.
In order that the case statement be defined, the current
value of the expression in the case clause nust be the
ordinal number of some statement of the statement list.

7.6.3 Exanmples
case I of begin X := X + Y; Y :=Y ¢ Z; 2 :=12 + X end

J of

n H{I) := -H{I);

begin H(I-1) := H(I); I
begin H(I-1) := H(I-1) * H(I); I
begin H(H(I-1)) I z:=

=
s
[=7]
we ws

o
=
ol

|

7.7 Iterative Statements

7.7.1 Syntax

<iterative-statement> := <{for-claused><{statement> |
<while-clause><statement>

<for-clause> ::= for <identifier> := <initial-value>
step <increment> until <11u1t> dol
for <identifier> := <initial-valued> antil <11m1t) do |
for <identifier> := <for-1list> do

<for-list> ::= <integer-expression> |
<for-list> , <integer-expressiond>

<initial-value> ::= <integer-expression>

<increment> ::= <integer-expression>

<1limit> ::= <integer-expression>

<while-clause> ::= while <logical-expression> do

7.7.2 Semantics

The iterative statement serves to express that a statement
be executed repeatedly depending on certain conditions specified
by a for clause or a while clause. The statement following the
for clause or the while clause always acts as a block, whether it
has the form of a block or not. The value of the control
identifier (the identifier following for) caanot be changed by
assignment within the controlled statement.

7.7 Iterative Statements 37

{(a) An iterative statement of the forn

for <identifier> := E1 step E2 until E3 do <statement)>
has the same effect as the block

begin <statement-0>; <statement-1> ... ; <statement-I>;
wee ;3 <statement-N> end

where, in the 1Ith statement, every occurrence of the
control identifier is replaced by the value of the
expression (E1 ¢+ I%E2). The index N of the last statement
is determined by N £ (E3-B1)/E2 < N+1. 1If N < 0, then it
is understood that the sequence is empty. The expressions
E1, E2, and E3 are evaluated exactly once, namely before
execution of <statement-0>. Therefore they cannot depend
on the control identifier.

{b) An iterative statement of the form

for <identifier> := El1 until E3 do <statement)>

is exactly equivalent to the iterative statement

for <identifier> := E1 step 1 until E3 do <statement>

{c) An iterative statement of the forn

for <identifier> := E1, E2, ... , EN do <statement>

is exactly equivalent to the block

begin <statement-1>; <statement—-2> ... <statement-I> ;
... <statement-N> end

where, 1in the Ith statement, every occurrence of the
control identifier is replaced by the expression EI,
enclosed by a pair of parentheses.

(d) An iterative statement of the fornm

while E do <statement)>

-—-—-—.—

is exactly equivalent to

tatement> ; goto L end

vhere it is understood that L represents an identifier
which is not defined at the place from vwhich the while
statenent is entered.

Exanmples
V:= 0 step 1 until N-1 do S == S + A(0,V)
le J > 0 and CITY(J) ~= S do J := J-1

—— s

o - iy w—— S s i

38 7.7 Iterative Statements
for I := ¥, X+1, X+3, X+7 do P({I)

7.8 Assert Statements

7.8.1 Syntax
<assert statement> ::= assert <logical expression>
7.8.2 Semantics

The execution of an assert statement causes the 1logical
expression to be evaluated. 1If the value is false, execution of
the program is terminated.

7.9 Standard Procedures

Standard procedures are provided imn ALGOL W for the purpose
of communication with the input/output systesn. A standard
procedure differs from an explicitly declared procedure in that
the number and type of its actual paraseters need not be
identical in every statement which invokes the standard
procedure.

Syntax:

<standard-procedure-statement> ::=
READ ({<input-parameter-list)) |
READON (<input-parameter-1listd>) |
READCARD (<input-parameter-listd>) |
WRITE (<transput-parameter-listd>) |
WRITEON (<transput—-parameter-listd>) |
TIOCONTROL {(<transput-parameter—1list))
<input~parameter-list> ::= <T-variable> |
<{simple-statement> |
<input-parameter-list> , <T-variable> ¢
<input-parameter-list> , <simple-statement>
<transput-parameter—-list> ::= <{T-expression> |
<{simple-statenent> |
<transput-parameter-list> , <T-expression> |
<transput-parameter-list> , <simple-statement>

7.9.1 The Input/Qutput Systenm

ALGOL W provides a single legible imput stream and a single
legible output stream, These streams are conceived as sequences
of records, each record comsisting of a character segquence of
fixed 1length. The input stream has the logical properties of a
sequence of cards in a card reader; records consist of 80
characters. The output stream has the logical properties of a
sequence of lines on a line printer; records consist of 132
characters, and the records are grouped into logical pages. Each
page consists of not less than one nor more than 60 lines.

Input records may be transaitted as strings without
analysis. Alternatively, it is possible to invoke a procedure
which will scan the segquence of records for data items to be
interpreted as numbers, bit sequences, strings, or logical
values. If such analysis is specified, data items may be

7.9 Standard Procedures 39

reference denotations of the corresponding constants {cf.
Section 4). In addition, the following forms of arithmetic
expressions are acceptable data items, and the corresponding
types are those determined by the rules for expressions
{cf. 6.3):

{1) <sign><T-constant>
where : T is one of integer, real, long real, complex,
long conmplex;

{2y <TO0-constant><sign><Ti-coastant> |
<sign><TO0-constant><signd><T1-constant>
where : T0 is one of integer, real, long real, and
T1 is one of complex, long complex.

Data items are separated by one or more blanks. Scanning for
data items initially begins with the first character of the input
stream; after the initial scan, it normally begins with the
character following the one which terminated the wmost recent
previous scan. Leading blanks are ignored. The scan 1is
terminated by the first blank following the data iten. In the
process, new records are fetched as necessary; character position
B0 of one record is considered to be immediately followed by
character position 1 of the next record. There exist procedures
to cause the scanning process to begin with the first character
of a record; if scanning would not otherwise start there, a new
record is fetched. '

Output items are assembled into records by an editing
procedure. Items are automatically converted to character
sequences and placed in fields as described below. The first
field transmitted begins the output stream; thereafter, each
field is normally placed immediately following the most recent
previously transmitted field. If, however, the field
corresponding to an item cannot be placed entirely within a
non-empty record, that item is made the first field of the next
record. In addition, there exist procedures to cause the field
corresponding to an item to begin a new record. PBach page group
is automatically terminated after 60 records; procedures are
provided for causing earlier termination.

7.9.2 Read Statements

Both READ and READON designate free field input procedures.
Input records are scanned as described in 7.9.1. Values on input
records are read, matched with the variables of the actual
parameter list in order of appearance, and assigned to the
corresponding variables. The type of each data item must be
assignment compatible with the type of the corresponding
variable. For each READ statement, scanning for the first data
item is caused to begin with the first character of a record; for
a READON statement, scanning continues from the previous point of
termination as determined by prior use of READ, READON, or
IOCONTROL (cf. 7.9.1).

READCARD designates a procedure transmitting 80 character
input records without analysis. For each variable of the actual
parameter list, the scanning process is set to begin at the first

——— W gy Sl it St

o i it o

40 7.9 Standard Procedures

character of a record {(by fetching a new record if necessary),
all 80 characters of that record are assigned to the
corresponding string variable, and subsequent input scanning is
set to begin at the first character of the next segquential
record.

7.9.3 Write Statements

WRITE and WRITEON designate output procedures with automatic
format conversion. Values of expressions in the transput
parameter list (there must be at least one) are converted to
character fields which are assembled into output records in order
of appearance {cf. 7.9.1). For each WRITE statement, the field
corresponding to the first value is caused to begin an output
record; for a WRITEON statement, assembly continues from the
previous point of termination.

The values of a set of predeclared edjiting variables control
the field widths and the formats of numerical gquantities printed
by the standard Algol W output routines. These variables are
initialized to appropiate default settings; their values can be
inspected and modified in the course of the execution of an Algol
W program. Their attributes are given by the following table:

Identifier Iype Initial Interpretation
Yalue
I_W integer 14 vwidth of integer fields
R_FORMAT string (1) nEn forsat of real, 1long real,
complex, and long complex fields
R_W integer 14 width of real and 1long real
fields; width of complex and
long comaplex fields (2*R_W + 2)
R_D integer 0 places following the decimal
point in real, long real,
complex, and long complex fields
S_W integer 2 width of the fields of blanks

appended to the end of each
field (excluding string fields).

Values of I_W and R_W control the output field widths used for
numerical gquantities, in conjunction with the values of S_W they
determine the layout of each line of numerical output. Integer
guantities are converted according to a standard format, but
three different formats for the legible representations of real,
long real, complex, and long complex values (strictly, rounded
approximations to these values) are available. Por a particular
output value, the actual format is determined by interrogation of
the variable R_FORMAT, which must specify one of the following:

(1) scaled format (R_PORMAT = ®S"), in which the 1legible
representation takes the form of a normalized wmantissa
followed by an explicit scale factor;

(2) aligned format (R_FORNMAT = "a%), in which the

— N

iy

— A — s oy, s WS iy Wit O st

e i O g, SN Sy W giigy D iy saimis Wi

7.9 Standard Procedures 41

representation includes an integral part, a fractional part
with a specified number of digits, but no scale factor;

(3) free-point format {R_FORMAT = "pPW"), in which the
representation is chosen to use a specified number of
significant digits, with the decimal point suitably
positioned and with a scale factor only if necessary.

Scaled and aligned representations are sometimes said to use
Wscientific® and "fixed-point™ notation respectively. If scaled
or free-point format is specified, the namber of significant
digits printed is given by R_W - 7. If (but only if) aligned
format is specified, the number of digits following the decimal
point is controlled by the value of R_D, and the magnitude of the
numerical quantity determines the number of significant digits
printed.

The field in which an output item is placed depends upon the
type of the item, as followus:

Type Pield-Description

integer right justified in a field of I_W characters
and followed by S_¥W blanks

real right justified in a field of R_W characters
and followed by S5_W blanks

long real right justified in a field of R_W characters
and followed by S_W blanks

complex right justifed in a field of (2%*R_W+2)

characters and followed by S_W blanks
long complex right justified in a field of (2*%R_W+2)
characters and followed by S_W blanks

logical right justified in a field of 6 characters

and followed by S_¥ blanks
string field length is exactly the length of the string
bits right justified in a field of 14 characters

and followed by S_W blanks

Parameters corresponding to the syntactic class
<simple-statement>; are executed as they are encountered in the
corresponding output lists; they cause no values to be
transmitted but can {and normally should) serve to change the
values of the editing variables or the state of the iaput/outpat
system. Furthermore, the values of the five predeclared editing
variables I_W, R_W, R_D, R_PORMAT and S_W are automatically saved
at the beginning of execution of WRITE or WRITEON statements and
restored at the end. Thus changes to the values of these
variables within an output statement are localized and can affect
only the editing of the remaining elements of that list, but
assignments outside of such a 1list can affect all subseguent
editing.

7.9.4 Control Statements

IOCONTROL designates a procedure which affects the state of
the input/output system. Argument values with defined effect are
listed below; other values currently have no effect but are
explicitly made available for local use or future expansion.

- ———— ity A o ot s vt ot doi. -

— S —— -

i S iy o s

42

7.9 Standard Procedures

Value Action {cf. 7.9.1)

1 Subsequent input scanning begins with the first

character of a record.

2 Subsequent output assembly begins with
field of a record.

3 Subsequent output assembly begins with the first
field of a record which, in turn, begins

output page.

4 Subsequent output has no provision for automatic

page skips.

5 Subsequent output contains carriage
characters providing automatic page

(Initial Option).

7.9.5 Examples

READ (X, A(1))

READCARD (S, LINE(10]80))
WRITE ("AVERAGE =", SUM/N)
WRITEON (X({1,J))

IOCONTROL (2)

Execution of the prograsn,

begin
procggggg SCALED ({inte _; value N);
begin R_FORMAT := "S"; R _W := N+7

end; :
procedure ALIGNED (integer value N,D) ;
begin R_FORMAT := "A"; R_W:= N+D+1; R_D:= D
end;
procedure FREER_POINT (integer value N) ;
kegin R_FORMAT := "F";R_W¥W := N#7

procedure NEW_LINE; IOCONTROL({2) ;

i v o i i e

PREE_POINT (S5) sI_W :=2; 5_W := 1;

for I:= -1, 0, 32 do
begin WRITE(S_W := 0, I,%":", NEW_LINE,I/3);
WRITEON("I %,ALIGNED({3,2),I/3,"*", SCALEBD(12),I/3,"*")
end
end.

will produce the following output limes:

-0.333331 -0.33 * -3.33333333333*-01 *
01 0.00 =* 0 *
10.6671 10.67 * 1.06666666667*+01 *

control

7.9 Standard Procedures 43

Note that the setting of S_W when the corresponding quantity
is transmitted determines the number of trailing blanks; also,
edited values are always rounded.

Any values assigned to I_W, R_W or S_W in excess of 132 are
treated as 132. In the event that values of I_¥, R_W, R_D, S_D
or R_FORMAT are erroneous or inconsistent with the magnitude or
precision of the number to be transmitted, then alternative
values are used. These values ensure that an approximation to
the number is always transmitted and that not more digits than
are varranted by the precision of the number are transmitted.

4y
8 STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS

The ALGOL W environment includes declarations and initialization
of certain procedures and variables which supplement the language
facilities previously described. Such declarations and
initialization are considered to be included in a block which
encloses each ALGOL W program (with the terminating period
eliminated). The corresponding identifiers are said to be
predeclared.

8.1 Standard Transfer Functions

Certain functions FPor conversion of values from one type to
another are provided. These functions are predeclared; the
corresponding implicit declaration headings are listed below:

integer procedure TRUNCATE (real value X);
comment the integer i such that
1i1 <= 1X} € ti} ¢+ 1 and i*X > = 0
integer procedure ENTIER {real value X);
comment the integer i such that
i<=xX<i+ 1 ;
integer procedure ROUND (real value X);
comment the value of the integer expression
if X < 0 then TRUNCATE(X-0.5) else
TRUNCATE (X+0.5) ;
integer procedure EXPONENT (real value X);
comment 0 if X = 0, otherwise the largest
integer i such that
i <= {log{1X])/1log16) +1
This function obtains the exponent used in the S5/360
representation of the real nusmber;
real procedure ROUNDTOREAL {(long real value X);
comment the properly rounded value of X ;
procedure REALPART {(complex valuye Z);
comment the real component of Z ;

L)
o
(Y
]

long real procedure LONGREALPART (long complex value 2);
real procedure IMAGPART (complex value 7);

comment the imaginary component of Z ;
long real procedure LONGIMAGPART (lomng complex value Z);
complex procedure IMAG (real value X);

corpent the complex nuamber 0 + Xi ;

ong complex procedure LONGIMAG (long peal value X);
ogical procedure ODD {integer valuye N);
corment the logical value
Nrer 2= 1;
procedure BITSTRING (integer value N);

comment tvo's complement representation of N ;

eger procedure NUMBER (bits value X);
comment integer with twvo's complement representation X ;
nteger procedure DECODE (string(1) value 5);
comnment numeric code for the character S
{(cf. Appendix 1) ;
string (1) procedure CODE (integer valuye N);
comment character with numeric code

{cf. Appendix 1) given by
abs (N rea 256) ;

ol

o
e e
A

hpoe

8.1 Standard Transfer Functions 45

In the following comments, the significance of characters in the
prototype formats is as follows:

decimal Adigit in a mantissa or integer
decimal digit in an exponent

hexadecimal digit in a mantissa or integer
hexadecimal digit in an exponent

sign (blank for positive mantissa or integer)
blank

le W@ KO

Fach exponent is unbiased. Decimal exponents represent powvers of
10; hexadecimal exponents represent powers of 16. Each mantissa
{except 0) Represents a normalized fraction less than one.
Leading zeroes are not suppressed.

alue X);
comment string encoding of X with format
4+EE+DDDDDDD ;
string (12) procedure BASE16 (real value X);
copment string encoding of X with format
@i +BB+AAAAAA ;
string (20) procedure LONGBASE10 (long real value X);
compent string encoding of X with format
4+EE+DDDDDDDDDDDDDDD
string (20) procedure LONGBASE16 (long real value X);
comment string encoding of X with format
QU+BB+AAAAAAAAARARAA ;

t

(’:
H

""'
=]
(1o

-y
> 3
N
——
o
I~
go

0

i

o
=]
©
for
 d
w
[
-~
o
-
i
o
I*']
.—l
<

»

string{12) procedure INTBASE10 (integer value N);
comment string encoding of N with format

a+DDDDODDDDD
string (12) procedure INTBASE16 (integer value ¥);
comment unsigned, two's complement string encoding
of N with format
UQUUUAAAAAAAA ;

8.2 Standard Function of Analysis

The following functions of analysis are provided in the
system environment. 1In some cases, they are partial functions;
action for arguments outside of the allowed domain is described
in 8.5. These functions are predeclared; the corresponding
implicit declaration headings are listed below:

real procedure SQRT (real value X);
comment the positive square root of X,
domain : X >= 0 ;
long real procedure LONGSQRT (long real value X);
comment the positive square root of X,
domain : X >= 0 ;
real procedure EXP (real valge X);
comment e ** X ,
domain : X < 174.67 ;
long real procedure LONGEXP (long real valuye X);
comment e ** X ,
domain 2 X < 174.67 ;
real procedure LN (real value X);
comnent logarithm of X to the base e,
domain : X > 0 ;

46 8.2 Standard Functions of Analysis
long real procedure LONGLN {(long real value X);
comment logarithm of X to the base e, domain : X > 0 ;
real procedure LOG {real value X);
comment logarithm of X to the base 10, domain : X > 0 ;
long real procedure LONGLOG (long real value X);
comment logarithm of X to the base 10, domain : X > 0 ;
real procedure SIN {(real value X);
comment sine of X (radianms),
domain : -B23550 < X < 823550 ;
long real procedure LONGSIN (long real value X);
comrment sine of X (radianms),
domain : =3.537'+15 < X < 3.537*+15 ;
real procedure COS (real value X);
comment cosine of X (radians)
domain : -823550 < X < 823550 ;
long real procedure LONGCOS (long real value X);
comment cosine of X (radianms),
domain : =3.537'+15 < X <3.537*+15 ;
real procedure ARCTAN {real value X):
comment arctangent (radians) of X,
range : -PI/2 < LONGARCTAN{X) < PI/2 ;
long real procedure LCNGARCTAN (long real value X);
compent arctangent (radiaas) of X,
range : —PI/2 < ARCTAN(X) < PI/2 ;
8.3 Time Function
The ALGOL W environment includes a <clock which measures
elapsed time since the beginning of program execution. The
resolution of that clock is at least 1/60 second and at most
1738400 second. A predeclared function is provided for reading
the clock
integer procedure TIME (integer value N);
comment Argument " Result Units
-time of day -
-1 seconds/60
- elapsed execution time -
0 minutes/100
1 seconds/60
2 seconds/38400
The result for any other argument is not defined;
8.4 Predeclared Variables

The following variables

initialized by assignment in the conceptual block
The values indicated for real and long

entire ALGOL W program.

are to be considered declared and

enclosing The

real quantities are to be understood as decimal approximations to

the actual machine-format values provided.

integer I_W;

comment initialized to 14 , controls output field size

for integers (cf. 7.9.1);

8.4 Predeclared Variables 47

integer R_W;
for real, long real, complex and
long complex quantities (cf. 7.9.1);
integer R_D;
comment initialised to 0, specifies the number of
fraction digits in aligned formats {(cf.7.9.1);
string (1) B_FORMAT;
compent initialised to "F", controls output format
for real, long real, complex and long complex
guantities {(cf. 7.9.1);
integer S_¥W; _
comment initialised to 2, specifies the number of
blanks appended to the end of an output numeric field
{cf. 7.9.1);
integer MAXINTEGER;
compent initialized to 2147483647, the maximunm
positive integer allowed by the implementation;
real EPISILON;
compent initialized to 9.536743*-07 ,
the largest positive real number e provided by the
implementation such that
1+ e=1;
long real LONGEPSILON;
comment initialized to 2.22044604925031'-16L ,
the largest positive long real number e provided by
the implementation such that '
1+ e =1;
long real MAXREAL;
the largest positive long real number provided by
the implementation;
long real PI;
comment initialized to 3.14159265358979L ;

8.5 Exceptional Conditions

The facilities described belovw are provided in ALGOL W to
allow detection and control of certain exceptional conditioas
arising in the evaluation of arithmetic expressions and standard
functions.

Implicit declarations:

integer XCPLIMIT, XCPACTION;

logical XCPMARK; string(64) XCPMSG);
reference (EXCEPTION)

ENDFILE,

OVPL, ONFL, DIVZERO, INTOVFL, INTDIVZERO,

SQRTERR, EXPERR, LNLOGERR, SINCOSERR;

Associated with each exceptional condition which can be
processed is a predeclared reference variable to which references
to records of the class EXCEPTION can be assigned. Fields of
such records control the processing of exceptions. The
association between conditions and reference variables 1is as
follous:

48 8.5 Exceptional Conditioans

Reference Variable Conditions
ENDFILE end of file detected on input
OVFL real, long real, .complex, long

complex (exponent) overflow

UNFL real, long real, coaplex, long
complex (exponent) underflow

DIVZERO real, long real, complex, long
complex division by zero

INTOVPL integer overflow

INTDIVZERO integer division by zero

SQRTERR negative argument for SQRT, LONGSQRT

EXPERR arqument of EXP, LONGEXP out of

domain (cf. B8.2)

LNLOGERR argument of LN, LOG, LONGLN,
LONGLOG out of domain (cf. 8.2)

SINCOSERR argument of SIN, COS, LONGSIN,
LONGCOS out of domain (cf.8.2)

When one of the <conditions 1listed above 1is detected, the
corresponding reference variable is interrogated, and one of the
alternatives described below is chosen.

If the value of the reference variable interrogated is null,
the condition is ignored and execution of the ALGOL ¥ program
continues. In such situations, a value of 0 is returned as the
value of a standard function or input operation. For other
conditions the result is that provided by the underlying hardware
{cf. IBM System/360 Principles of Operation, IBHN Systens
Library, Form A22-6821). In determining such a result, it is to
te noted that in those cases in which the detection of
exceptional conditions can be inhibited at the hardvare level,
namely integer overflow and exponent underflow, detection is so
inhibited when the corresponding reference is null.

If the value of the reference variable interrogated is not
null, the fields of the record designated by that reference are
interrogated, and the processing action is that described by the
algorithm given below in the form of an extended ALGOL W
procedure. Identifiers in lower case represent quantities which
transcend the ALGOL W language; they are explained subsegquently

(reference (EXCEPTION) value CONDITION);
begin
XCPNOTED {CONDITICON) := true;
XCPLIMIT (CONDITION) := XCPLIMIT(CONDITION) - 1;
if (XCPLIMIT{CONDITION) < 0) or XCPMARK(CONDITION) then
WRITE("*#* ERROR NEAR COORDINATE nnnn -~ ",

8.5 Exceptional Conditions 49

XCPMSG (CONDITION)) ;
if XCPLIMIT(CONDITION) < 0O then endexecution else
if specialcondition then
resultant := default else
resultant := if XCPACTION{CONDITION)

= 1
then adjustment else
if XCPACTION(CONDITION) = 2

then OL else
default
end PROCESSEXCEPTION

This procedure 1is invoked with the value of the reference
variable appropriate to the condition as actual parameter. The
significance of the special identifiers used is as follows:

nnnn approximate coordinate number of the source
code which was being executed when the
exceptional condition was detected

endexecution procedure to terminate execution of the
ALGOL W progran

specialcondition logical value which is true if, and only if,
the condition bheing processed is one of those
listed below

default result of the operation or function ' provided
by the ALGOL W system prior to invocation of
the exception processing procedure; this is
defined by the hardware for arithmetic
operations and is the value 0 for standard
functions and for 1input operatioas. (cf.
IBM System/360 Principles of Operation, IBM
Systems Library, Form A22-6821)

resultant value to be returned as the result of the
arithmetic evaluation, standard function
invocation, or input operation

adjustment adjusted result of the operation according to
the following table

Specialcondition Adjustaent

exponent overflow, if default < 0 then
division by zero —MAXREAL else MAXREAL

exponent underflcw OL

argqument X out of domain for :

SORT, LONGSQRT SQRT {(abs X), LONGSQRT (abs X)
EXP, LONGEXP MAXREAL

LR, LONGLN -MAXREAL

LOG, LONGLGG -MAXREAL

SIN, LONGSIN OL

C0S, LONGCOS oL

o A - s

50 8.5 Exceptional Conditions

endfile on input; according to type:

numerical 0
logical false
string "o
bits 30

The reference variable UNPL is initialized by the systenm to
null. All cther reference variables listed above are initialized
to references to a special record. Interrogation of this record
by the procedure described above causes the ALGOL W program to be
terminated with a message indicating the type of exception. Any
other attempt to access any field of this record will result in a
reference error.

Condition] XCPACTION XCPACTION=1 XCPACTION=2 Reference=KNULL
- 1._#1 or 2
l
ENDFILE? 10 0 0 0
]
OVFL | exponent 128 #MAXREAL 0 exponent 128
} too small too small
|
UNFL] exponent 128 0 0 0
} too large
|
DIVZERO | dividend . #MAXREAL 0 dividend
|
INTOVFL j{ true result true result true result true result
| & 2%%32 * 2%%32 + 2%%3) + 2%%32
]
INTDIVZERO] dividend dividend dividend dividend
1
SQRTERR] 0 SQRT{abs x) O 0
i === .
EXPERR } O MAXREAL 0 0
1
LNLOGERR | O ~MAXREAL 0 0
|
SINCOSERR | O 0 0 0

lvhen an endfile condition occurs on attempting to read a
string, a string of blanks is supplied; for a logical value,
false is returned.

Table of Results for Exceptional Conditions
8.5.1 Example
OVPL := EXCEPTION(FALSE, 10, 1, TRUE, ®OVERFPLOW FIXED UP");
The field values and their effects are:
XCPNOTED FALSE becomes TRUE if an overflow occurs.
XCPLINIT 10 allows up to ten overflows before termination.
XCPACTION 1 replace the result with +MAXREAL.

XCPMARK TROE print XCPHSG each time an overflow occurs.
XCPMSG WOVERFLCH FIXED UPM

ALGOL W

PROGRAMMER'S GUIDE

51

52
9. THE ALGOL W COMPILER

The compiler for the ALGOL ¥ language is re-entrantly coded
in PL360; when used it is augumented with an interface which
provides communication with the host operating system. Curreatly
two interfaces exist which provide, in effect, twc coapilers
meeting different objectives. Differences bhetween the tvo
compilers lie in the disposition of the compiled program and in
the program testing and library facilities which are available
when the compiled program is loaded and executed.

The XALGOL W <compiler is 1intended for wuse in progranm
developrent and provides facilities for the compilation and (when
compilation is successful) execution of one or more ALGOL ¥
programs. A standard 1library is provided which cannot be
augmented by the user. It does hovever support extensive
optional aids to the debugging and analysis of programs; in
particular, it 1is possible to obtain a summary of statement
execution frequencies, a post-mortem dump of variable storage
after a run-time error and a selective trace of executed
statements and their effects. There is no provision for saving
compiled programs; each run involves recompilation of the source
program.

The ALGOL ¥ compiler is intended for translating
"production" programs, i.e., relatively large programs which are
likely to be run several times before they require modification.
In addition to a standard 1library, independently coaspiled
procedures (coded in PORTRAN, PL360, ASSEMBLER as well as ALGOL
W) may be called from libraries administered by the operating
system, by means of the ALGOL W external reference facilities
{(cf.5.3.2.4). Most of the debugging and program analysis aids
are not available.

Invocation of the compilers is described in sections 10 and
1.

Subsequent reference to "the compiler®, unqualified by
either of the names XALGOL W or ALGOL W implies reference to the
compiler proper, unaugmented by either interface.

9.1 The Language

The language accepted by the compiler is that described in
sections 2-8 of this manual subject to limitations implied in the
following paragraphs of section 9.1.

9.1.1 Symbol Representation

Only capital letters are available. Basic syambols which
consist of underlined letter sequenrces in the Language Definition
are denoted by the same letter sequences without further
distinction. As a consequence, they cannot be used as
identifiers. Such letter sequences are called reserved words.
Embedded blanks are not allowed in reserved words, ideatifiers
and numbers. Adjacent reserved vords, identifiers and numbers
must be separated by at least one bhlank; otherwvise, blanks may be
used freely. The basic symbols, other tham those - appearing in

identifiers or numbers,

$ -

* /% ()
#“1

* -
L4 ’ e

DO I¥ IS OF OR
ABS AND DIV END FOR

9.1 The Lang
are:
K= > >= =

REM SHL SHR

uage

53

BITS CASE ELSE GOTO GO TO LONG NULL REAL STEP THEN TRUE

ALGCL

ASSERT RECORD

RESULT STRING

ARRAY BEGIN PALSE SHORT UNTIL VALUE WHILE

COMMENT COMPLEX FORTRAN INTEGER LOGICAL
PROCEDURE REFERENCE

The
redeclared due to
identifier
is defined.

following

Standard Identifiers

identifiers
block structure.

ar

ARCTAN 8.2 LN
BASE10 8.1 LNLOGERR
BASE16 B. 1 LOG
BITSTRING 8.1 LONGARCTAN
CODE 8.1 LONGBASE10
COS 8.2 LONGBASE 16
DECODE 8.1 LONGCOS
DIVZERO 8.5 LONGEPSILON
ENDFILE 8.5 LONGEXP
ENTIER 8.1 LONGINMAG
EPSILON 8.4 LONGINAGPART
EXCEPTION 8.5 LONGLN
EXP 8.2 LONGLOG
EXPERR 8.5 LONGREALPART
EXPONENT 8.1 LONGSIN
IMAG 8.1 LONGSQRT
IMAGPART B.1 MAXINTEGER
INTBASE10 8. 1 MAXREAL
INTBASE16 8.1 NUMBER
IRTDIVZERO 8.5 0oDD
INTPIELDSIZE 8.4 QVFL
INTOVFL 8.5 PI
TIOCONTROL 7.9.4 REALPART
I_W 8.4 READ

9.1.3 Restrictions

e predeclared,

but

may be

The reference alongside each

READCARD
READON
ROUND
ROUNDTOREAL
R_D
R_PORMAT
BR_W
SIN
SINCOSERR
SQRT
S_%
SQRTERR
TINE
TRACE

* TRUNCATE
UNFL
WRITE
YRITEON
XCPACTION
XCPLINIT
XCPMARK
XCPHSG
XCPNOTED

¢ & 2 & & & & 5 0 0 & * s s & 0 2 5 8

N &N BN NN 2 NN @SN NN

VO ORDODIBOROODODOIRLERDODOODL®

~J
[}

-~

0
.

-~

is to the subsection in which the predeclared meaning

X OO OOV OREDOEROODDODEOOOOW
.
VNN WVWWUN= WWUHRENUVNINE SR N0

The implementation imposes the following restrictions:

containing

1) 1dentifiers consist of at most 256 characters.

2) DNot more than 15 record classes can be declared.

3) Approximately 256 constants are allowed in a procedure or
the outermost block.

4) Not more than 255 procedures or blocks
declarations are allowed.

5) The data area excluding array elements for each procedure
or block with declarations is limited to 4096 bytes.

6) The total amount of space occupied by the constants and
machine code in any procedure or block

containing

54 9.1 The Language

declarations may not exceed 8192 hytes.

7) The total number of blocks, procedure declarations and
for statements may not exceed 511.

8) ©No block may be included in more than 29 other blocks.

9) Blocks with declarations, blocks associated with
procedures and actual parameter lists may not be nested
within one another to a depth of @more than eight
(counting the initial BEGIN).

10) References to not more than 63 procedures are alloved
within a single procedure.

9.2 Input Format

The compiler accepts input records of 80 characters. The
first 72 characters are processed as part of an ALGOL W program;
characters 73 through 80 are listed but are not processed
otherwvise, Character 72 of one record is considered to be
immediately followed by character 1 of the nmext record. Strings
and comments should be arranged so that the character '2' does
not appear in character position 1.

9.3 Compiler Directives

The compiler accepts directives inserted anywhere inm the
sequence of input records; these directives affect subsequent
records. A directive record is marked by the character '@' 1in
character position 1 followed by the directive starting in
character position 2. The admissable directives and their
functions are:

ALIST List source records. (Initial option).
ANOLIST Do not list source records.

ATITLE,<string> Continue any subsegquent 1listing on a new
page. The coama and string are optional; if
present, the string (of up to 30) characters
stripped of the enclosing quotes is used as a
title in the centre of the heading 1line of
the nev page and subsequent pages.

BSYNTAX Check the program for syntax errors but do
not execute.

DSTACK Dump the current contents of the parsing
stack if a pass 2 error should occur
{(cf.Appendix TII) with the most recent
syntactic element listed last.

@NOCHECK omit checks on subscript ranges and reference
compatibility and the initialisation of
variables to "undefined®.

@DEBUG, n (m) Activate the debugging facilities. (cf.9.4).

9.4 Debugging Systenm

If the execution of a program terminates abnormally, a

9.4 Debugging Systen 55

message indicating the cause and 1location of the failure is
always produced (cf. Appendix 2). The XALGOL W compiler
optionally provides further facilities which are designed to aid
in the debugging and analysis of programs. These facilities are
described below; details of the debugging output and its
interpretation are deferred to section 9.5.

9.4.1 Debugging Pacilities

{1) Post-Mortem Dump

A dump of active storage is produced if and when any error
causing abnormal termination of execation is detected. For
each segament {i.e., each procedure or block with
declarations), beginning with the one most recently
activated, the identifiers and values of all local variables
are printed. An indication of the point of activation of
that segment is also given. The dump displays no more than 8
elements of each array. Unless the "@NOCHEBCK"™ directive is
included, local variable storage is initialized to a special
bit pattern, which is interpreted as "undefined®™ and printed
as "2 by the dump and trace routines. Tests for the use of
such values are not made as the program is executed, however,
and, for most data types, the bit pattern is also a wvalid
representation of a permissible (but relatively unusual) data
value.

{2) Statement Counts
After the execution of the program, a listing is produced
showing the number of times each statement in the program has
been executed. The syntactic structure of the source progran
is used to display the source text in an edited format which
emphasizes the control structure.

(3) Store Trace
The effect of executing each statement 'is displayed the first
n times that the statement is encountered. The value of n
can be selected by the programmer and modified under progranm
control as described below. Output for each traced flow unit
(normally, an elementary statement or clause) includes the
following information:

{a) The source coordinate.

{(b) The current frequency count for the flow unit.

{c}) The source text.

{d) An indication of all assignments to variables, calls
of procedures, and accesses to parameters.

{e) The values of anonymous expressions (labeled by "*")
directly governing the flow of control.

Prequency counts are used to control the automatic suspension
(vith the printing of "...®) and reinitiation (with an
appropriate message) of the trace output.

(4) Fetch/Store TIrace
This trace is similar to the store trace, but the
identifications and values of all variables used in the
evaluation of expressions are also included in the trace
output.

56 9.4 Debugging Systen
9.4.2 The DEBUG Directive

The desired debugging options are selected by the
compilation directive "2DEBUG,m{n)". The parameter m must be a
single digit, with 0 < m < 4. The facilities selected for each
value of m are indicated by the following table:

- —— T ——— - — T — " - — ———— A - A — N, i -

post-morteam dump i
flovw summary i
store trace i) 4
fetch/store trace |

The parameter n must be an unsigned integer; it is relevant only
wvhen one of the +trace options has been specified and then
determines the number of times each flow unit is to be traced.

The following default options and abbreviations have been
established for the DEBUG directive:

{1) "3DEBUG,m" implies n=2

{(2) "2DEBUG™ implies m=4,n=2

(3) The default option for the XALGOL W coapiler is aDEBUG,1

(4) The ALGOL W compiler ignores DEBUG directives precluding any
change to the default "aDEBUG,0".

9.4.3 The TRACE Routine

The standard procedure TRACE is also provided to allow
explicit control of the trace output; it has the following
implicit declaration heading:

procedure TRACE(integer value N);
comment if N 2 0, the trace 'limit is set to N.
Otherwvise, that limit is reset to the value implied by

the "3DEBUG" compilation directive;

Calls of TRACE have no effect unless one of the trace options is
selected when the program is compiled; if all tracing 1is. to be
controlled explicitly, the compilation directive “aDEBUG,4(0)"
should be used.

Space required for the execution of a program is nminimized
by option 0; time, by option 0 or 1. Options 3 and 4 produce
approximately 2n lines of output for every traced flow unit and
should be used with discretion. 1In practice, option 4 does not
produce significantly many more lines of printing than option 3.

9.5 Compiler Output
The compiler listing consists of:

1) A source program listing produced at compile tinme.

2) Error messages produced at both compile time and run tine.
(In the <case of the XALGOL W compiler, error messages can
also occur at the time the compiled program is 1loaded into
core prior to execution).

9.5 Compiler Cutput 57

3) Optional diagnostic and program analysis information produced
by the debugging system at run time.

9.5.1 The Source Program Listing

The source program listing comprises four columns of output.
These contain, from left to right, a four digit coordinate
number, a two character block nesting level indicator, an image
of the text on each source record and finally an image of the
source record sequence number (if these are provided). These
columns of output are separated by blank fields of widths one,
six and eight characters.

{a) The Coordinate Number

A coordinate count is maintained by the compiler while scanning
the source text. The count starts at zero and is incremented by
one for each a semi-colon (except one ending a comment) or BEGIN
passed. The coordinate number displayed at the beginmning of each
line is the value of this count after coapletion of the scanning
of the preceding lines.

{b) The Block Nesting Level Indicator

The block nesting level count, L, maintained by the «compiler
starts at zero and is incremented by one for each BEGIN, and is
decremented by one for each END, scanned. After the first BEGIN
{last END) symbol on each source record, L REM 10 is evaluated
and the resulting decimal digit is displayed as the first
{second) <character of the block nesting level indicator on the
same line as the source record image. If no BEGIN or END symbol
appears in a source record, then the corresponding indicator
character is '-°*,

(c) The Source Record Image

Characters 1-72 of each source record are displayed exactly as
read. Compiler directives, i.e., records with the character 'a2!
in position one of the record, are not listed. (Note that ALIST,
PNOLIST and ATITLE affect the output of the source progran
listing cf.9.3.).

(d) The Source Record Seguence Number

Character positions 73-80 of each source record are displayed
exactly as read. These positions are available for sequence
numbers or other indicators but are frequently left blank, in
which event, inadvertent typing of program beyond character
position 72 (cf.9.2) of a record is clearly signalled on the
source listing due to the eight blank separation betveen the
source record and segquence number fields. Apart from listing
characters 73-80, the compiler ignores then.

The source listing terminates with the messages
EXECUTION OPTIONS: DEBUG,m TIME=t PAGES=p

ddd.dd SECONDS IN COMPILATION, (a,b) BYTES OF CODE GENERATED
DIRECTORY SIZES (X,Y,Z)

58 9.5 Compiler Output

m is one of the integers 0<m<4 (cf.9.4.2); the units of time are
seconds and a,b,x,y,z are five decimal digit integers with the
following significance:

a is the total amount of space occupied by the compiled
machine code,

b 1is the amount of space occupied by compressed source text
used by the debugging systen,

X,y and z are the sizes of various symbol tables needed by
the debugging system; the line containing these values does

not appear if the debug parameter m<2.

Any errors detected during compilation, result in messages
which are printed following the source program listing. Loader
messages (XALGOL ¥ only), if any, follow next (cf.Appendix II).

9.5.2 Debugging System Output

It is convenient to describe the debugging system output in
terms of increasing values of m in the DEBUG,mr directive.

1) Error Messages

In the event of a run time error, one of the messages described
in Appendix II is printed. If the debug parameter m=0, only this
information is printed.

2) Post-Mortem Dump

If the debug parameter m=1, the error message is followed by a
post-mortem dump. The post-mortem commences with the message

=> TRACE OF ACTIVE SEGMENTS

A segment 1is either the body of 'a procedure or a block
containing declarations. Segments associated with procedures are
distinguished by the name of the procedure. Blocks are
ambiguously referenced by the name "<BLOCK>" except the outermost
which has the name " (MAIN)".

For each active segment, starting with that in which the
error was detected and working backwards to the segment which
invoked it and then the segment wvhich invoked that, etc., the
following information is printed:

a) The name of the segment, in the format:
=> SEGMENT NAME: name

If this message is followed by " (DEPTH a)", vhere n is an
integer greater than or equal to two, it signifies the
tracing of a recursive procedure segment at depth n. If n=1
the depth is not explicitly specified.

b) Except in the <case of the segment (MAIN), a message
indicating the point of invocation. This message is in one
of the foras:

.C)

9.5 Compiler Output 59

name WAS ACTIVATED FROM invoker, NEAR COQRDINATE xxxX
name WAS REENTERED FROM invoker, NEAR COORDINATE xxx¥X,
TQO ACCESS A PARAMETER

The second message arises in circumstances like the
following. Consider a program skeleton

BEGIN
PROCEDURE A (REAL P)
BEGINawee; R 2= Pilacw

END;
PROCEDURE X;
BEGIN
REAL B;
eesy A{B * SORT{-1})3ee-"
END;

on-; x;.oc

END.

When X is invoked it eventually calls A passing B#*SQRT(-1) as
an unevaluated parameter, but when A encounters the formal
parameter P, the substitution of the actual parameter
B*SQORT(-1) entails reentering X because the actual parameter
B*SQRT(-1) 1is 1local to X. When the SQRT procedure fails on
the negative arqument, the second of the above messages will
occur in the dump, vwhere 'name' would be X and ‘'invoker'
would be A. Subsequently in the dump a message of the first
type would be output where ‘name' is X and ‘'invoker' is
{MAIN).

In the event that the message output is of the first type it
is preceded by:

The names and values of local variables in the segment.
These are printed in the format, ‘

name = value

usually four to a line. Unless @NOCHECK was specified during
compilation, values of variables which have not been
initialised appear as "?", Values of parameters for which
local copies have been created are identified by a name which
is the corresponding formal parameter name with a prinme
appended. Strings are printed with initial and terminal
gquotes but internal quotes are not doubled. Reference values
are printed in the format,

name = recordclassname.integer

wvhere the integer is the ordinal number of the record in
order of creation. At most eight elements of an array are
listed (the seven smallest values of the first subscript with
other subscripts taking their minisum value and the element
where all subscripts take their maximum value). Control
variable values which are followved by an asterisk indicate
that the value is the last value prior to exit from the for
statement. If an asterisked entry appears in the dump the
dump terminates with

60 9.5 Compiler Cutput
* LAST VALUE OF CONTROL IDENTIFIER PRIOR TO NORMAL EXIT
3) Statement Counts.

If the debug parameter 2=2, then between the error message and
the post-mortem dump a listing is produced of the program text
suitably edited to display the control structure of the progran
clearly. Coordinate numbers are shown on this listing as on the
source program listing. The execution count information is
represented between the colusm of coordinate numbers and the
program text.

Apart from irrelevant details of layout, figure 1 shows the
run time output of a small program with a=2

=> EXECUTION FLOW SUMMARY

0000 1o==] BEGIN

0001 | INTEGER SUM, COUNT, NUMB;

0002 ! WHILE TRUE DO

0002 2.--] BEGIN SUM := 0; COOUNT := 0;
—e—= ERROR ====m = e e e e e e e e e
0005 | READON (NUMB) ;

~=== ERBROR ====———mmmm—m———— ——————————— e e
0006 | WRITEON (NUMB) ;

0007 i WHILE NOUMB ~= -1 DO

0007 3.--4 BEGIN SOM := SUM + NUMB;
0009 i COUNT := COUNT + 1;

0010 | READON (NUMB) ; WRITEON (NUNB)
0011 { END;

0012 | IF COUNT = 0 THEN

0012 0.--] WRITE(®"EMPTY GROUPY)

0012 | ELSE

0012 1.--1 WRITE("AVERAGE™, SUM/COUNT);
0013 i TOCONTROL (2)

0013 1 END

0013 { END

=> TRACE OF ACTIVE SEGMENTS
=> SEGMENT NANE: {MAIN)

VALUES OF LOCAL VARIABLES:

SuM = 0 CODNT = 0 NUMB = -1
EXECUTION TERMINATED
Pigure 1.
The statement count listing follows the message

=> EXECUTION FLOW SUMMARY
If a run time error has occurred, horizontal 1lines delisit the
approximate location of the error. Each line of source text is

preceded by the symbol "j" and the algorithm for interpreting the
flow summary is:

9.5 Compiler Cutput 61

(a) Select any statement and locate the ™"|" to the left of
the corresponding source text.

{(b) If the "|" is labeled by a count, terminate with that
count.,

(c) Otherwise, read up to find the first ®|"® which is
directly above or to the left of the original; ignore all
those to the right.

{d) Repeat from step (b).

The resulting count will be one too high if the algorithm above
passes the point of a terminating error or a procedure call
leading to that error.

4) The Store/Fetch Trace.

If m=3 or 4, in addition to obtaining statement counts and
{(following an error) an error message and post-mortem dump,during
the execution of the program, values of variables are output
vhenever they are fetched for use (m=4, only) or whenever a new
value is assigned.

As each statement {or clause) is executed under the tracing
facility the following are printed,

a) the coordinate nuaber,

b) the nnmeber of times it has been executed,

c) the text of the statement {or clause),

d) the trace information, notably the names and values of
variables, and possibly expressions, within the
statement.

Items a),b) and c¢) are printed on one line in the format
used in the statement count listing; printing associated with 4)
is on the succeeding line, indented one position to the right of
the text on the preceding line. ‘

Examples.
0017 1.—} R2 := ANSWER

ANSHER = RNODE.1; R2 := RNODE.1
0018 1.--1 IF N<7 THEN

N = 5; * = TRUE

As in the case of the post-mortea dump, naming conventions
and notation are introduced to name values and specify the
occurrence of events which are not explicitly named in the source
progranm. Wherever possible, the conventions that are used in the
post-mortem dump are employed. The following message formats are
used in the trace information

name = value {==4 only), ‘*name' is the name of a
variable used in the statement.

pame := value ‘name' 1is the name of a variable to
which a new value is assigned by the
statement.

i

value "hame' is the nase of a formal
parameter with the VALUE OR RESULT

nanpe?

62 9.5 Compiler Output

attribute. A new value is assigaed to
the 'local copy' of this parameter.

recordclassname. integer is used to denote a reference value. The
integer is the ordinal number ({in the
sequence in which records of this class
are created) of the record which is the

value,

* = value * is used as the name of the (anonymous)
expressions in. 1if, vhile or case
clauses.

-> nanme indicates a call to the procedure with
identifier 'name’.

=> TRACING name indicates that a new segment is being
traced. :

+ RESUMING name indicates that the trace of a segment is
continuing after return from another
segment.

<PARAMETER ASSIGNNENT> indicates the performance of operations
which bind a formal parameter to an
actual parameter.

napef{..) = value indicates the value returned by a
function procedure with identifier
‘*name?,

<<PARAMETER IN name AT coordinate: trace>>

if an actual parameter of the procedure
‘name*', called at ‘fcoordinate' is an
expression or statement them ‘'trace' is
a trace of the parameter evaluation. In
that parameters may be procedures vwhich
can invoke procedures this message often
is nested within itself.

formalname :- actualname indicates formal-actual paranmeter
assignments.
¥ is used as a name for anonymous

expressions, e.g., as ‘actualname' in
the preceding message type when the
actual parameter is an expression.

eoe indicates that tracing has been
suspended either because the next
statement has already been traced n
times (cf.3DEBUG,m{n) in 9.4.2) or
because of the action of the TRACE
procedure {cf.9.4.3).

9.5 Compiler Output 63

Return of control to the beginning of an iterated statement
is indicated by repeating part of the program text, such as,

FOR control identifier
WHILE condition

but within parentheses to indicate continuation of a previously
activated statement, This text is folloved by the trace of the
values involved.

Whenever a new record is read by a READ or READON statement,
the complete card image is printed as a string in the message

INPUT RECORD: string

Strings are printed with an initial and a final quote but
internal quotes are not doubled.

. e o — . i e A . A S et R sl

Procedures, which are defined externally to the ALGOL W
programs wvhich invoke them, can use either ALGOL W or FORTRAN
linkage and parameter conventioms. The former are obtained
automatically when an ALGOL ¥ procedure declaration is compiled.
The corresponding machine code is subject to change and will not
be documented here. PORTRAN linkages are identical to the
standard IBM S-type 1linkages, which are described in detail
elsewhere (See, for example, MTS Volume 3, pages 15-24 or FORBRTRAN
IV (G and H) Programmer's Guide, IBM SRL Form GC28-6817, Appendix
C). They are produced by the IBM PORTRAN compilers and also used
by many PL360 and assembly language programs.

9.6.1 ALGOL W Procedures

ALGCL W procedure declaratioms which stand as programs
{cf.7.0) must satisfy the following restrictions:

{1) No unbound (global) identifiers, except those considered to
be declared in the standard environment, are allowed.

{2) Declarations of record classes (and thus of reference
quantities) are subject to special rules. They should
norsally be avoided.

Independently compiled procedures are known ia the systen
environment (i.e., to the loader) by the names of their entry
points; these are formed by extending (with "#"'s) or truncating
the ALGOL W procedure identifier to 5 characters and appending
"o01".

9.6.2 FORTRAN Subroutines
A FORTRAN subroutine or subprogram can be used as an ALGOL W

procedure. The type correspondence between ALGOL ¥ and FORTRAN
is given by the following table:

64 9.6 Externally Defined Procedures

ALGOL W i IBM FORTRAN IV
integer | INTEGER*4

real | REAL*Y

long real] REAL*S8

complex | COMPLEX*8

long complex | COMPLEX*16
logical | LOGICAL*1

string (n) { (LOGICAL*n)

bits | LOGICAL*4
reference] - - -

String functions are not ipplemented. The permitted formal
parameter specifications follow with their interpretations:

{1) <T-type>
The corresponding actual parameter is exanmined. If that
parameter is a variable, the address of that variable is
computed (once only) and transsitted. Othervise, the
expression which 1is the actual parameter is evaluated, the
value is assigned to an anonymous local variable, and the
address of that variable is transmitted.

{2) <T-type> yalue , <T-type> result , <T type> valye result
As in ALGOL W procedures, a local variable unique to the call
is created, and the address of that variable is transmitted.

(3) <T-type> array

The address of the actual array elemeant with unit indices in
each subscript position is computed and transaitted, even if
that element lies outside the declared bounds of the ALGOL W
array. Arrays wvith only one dimension and arrays with unit
lowver subscript bounds will have elements with indices which
are identical in ALGOL W and FORTRAN routines. Array
cross-sections should not normally be used as actual
parameters of FPORTRAN subprograms.

If FORTRAN input/output or FORTRAN error handling facilities are
to be used, the subroutine package IBCOM, or a suitable
substitute, is required.

9.6.3 External References

An external reference (cf. 5.3.2.8) standing as a procedure
body is used to establish the connection between an ALGOL W
program and an independeantly prepared procedure. The symbols
algqol and fortran in that reference indicate the use of ALGOL W
and S-type linkage conventions respectively; the associated
string is extended (with blanks) or truncated to 8 characters and
taken as the entry point name of the external procedure. For a
FORTRAN external procedure the entry point name is simply the
name of the FORTRAN subroutine or function. Por an ALGOL W
external procedure the entry point name is derived from the
procedure name as described in 9.6.1.

9.6 Externally Defined Procedures 65
3.6.4 Example

The first program {outline) is an ALGOL ¥ procedure which is
invoked as an external procedure in the second progra=.

INTEGER PROCEDURE EXTFUN (REAL VALUE X);
BEGIN...
END.

BEGIN
INTEGER I; REAL A,B;
INTEGER PROCEDURE INTFPUN(REAL VALOE Y);
ALGOL “EXTFUOO1"™;
eees I 2= INTPON{(A * B); aow
END.

66
10 ALGOL W IN MTS

The two versions of the compiler referred to in section 3
are located in files *XALGOLW and *ALGOLW.

10.1 Supmary

The needs of most users will be met by one of the "recipes"
given below. More detailed information about these and other
processing options and facilities is contained in sections 10.2
and 10. 3.

MTS will compile and execute ALGOL W programs if the input
is arranged as followus:

{1) For batch processing, construct a card deck (or a file of
card-image records) which includes the following sequence:

$RUN *XALGOLW

$ALGOL T=t P=p -==3

<program> | repeat

$DATA] 0 or more times
<data> -—=3

$SENDFILE

All output will be directed to the line printer.
{2) From a terminal, issue a command of the folloving form:
$RUN *XALGOLW SCARDS=sourcef 1=listingf

The file sourcef must contain a sequence of source prograss
and data; it should be arranged as follovs:

$ALGOL T=t P=p -——3

{program> | repeat

$DATA i 0 or more times
<data> —~——d

Note that 1lines containing more than B0 characters will be
truncated (with a warning message) and that only the first 72
characters of a line will be examined for ALGOL W source
text. The file 1listingf (normally, a temporary file) will
receive the compilation listing. All compilation diagnostics
and all output from the execution of user programs will be
directed to the terminal.

In both cases, the parameters on the corresponding "gALGOL"
control line will 1linmit the resources allowved for the execution
{not <compilation) of an ALGOL % program to t seconds of (problen
state) CPU time (default: 10 seconds) and p pages of printed
output {(default: 10 pages). In batch, the corresponding global
limits take precedence if, and only if, they are exceeded first.
Note that the diagnostics produced when ALGOL W forces progranm
termination usually are more helpful than the corresponding MTS
messages.

10.2 MTS *XALGOLW Specifications . 67

10.2 MTS *XALGOLW Specificatioas

*XALGOLW contains a monitor which supervises the compilation
and immediate execution of a sequence of ALGOL W programs. No
object files are created; programs are compiled directly into
main memory and then executed. *XALGOLW is invoked by a command
of the following fora:

$RUN *XALGOLW [SCARDS=sourcef] [SPRINT=outputf] [SERCON=errorf)
[1=1listingf]

The logical devices are used as follows:

(1) SCARDS supplies source prograas and data. Each prograam to be
compiled and executed must be delimited by control lines; the
required format is described below. Library files, data
files, and the like can be inserted into the source stream by
use of the facilities provided by HuTS for explicit or
implicit file concatenation.

(2) SPRINT receives all output resulting from execution of the
compiled program(s). If logical device 1 is not specified,
SPRINT also receives the compilation listing(s).

(3) SERCOM receives any diagnostic messages generated by the
compilation step(s).

(4) If logical device 1 is specified, it receives the compilation
listing(s) ; otherwise, this output is directed to SPRINT.

In all output files, the first character of each line is a
logical carriage control code supplied by the systen. In the
absence of explicit specifications, the logical devices SCARDS,
SPRINT, and SERCOM are associated with the pseudofiles *SOURCE*,
SINK, and *MSINK* respectively. '

The file sourcef must contain a sequence of ALGOL W programs
and data. Any line beginning with the string "$ALGOL"™ or the
string "$DATA" is considered to be a control 1line, and control
lines must be used to delimit each program accordiag to the
following schenme: -

$ALGOL [params] --=3

{program> i repeat

$DATA { O or more times
<data> -

The "$DATA"™ control line can be omitted if there is 1o input
data. Note that 1lines of sourcef contaianing more than 80
characters are truncated (with a varning message) and that only
the first 72 characters of a line are examined for ALGOL ¥ source
text. The "$ALGOL" control line can be used to specify optional
keyword parameters. A SIZE parameter controls the amount of
working storage available for compilation and execution of the
prograe. TIMNE and PAGES parameters establish 1limits on the
problem state CPU time to be used and the number of pages to be
printed during the execution (not compilation) of the progran.
Any MTS 1limits take precedence over these if (and only if) they

68 10.2 MTS *XALGOLW Specifications

are exceeded first. Note that execution time rationing is not
exact; execution time can overrun the specified limit by an
unpredictable amount not exceeding 0.5 second. Details of
parameter specification are given by the following table.

Format:

[SIZE=n{K|P]] [{TIMEIT}=¢t[N|S]] [{PAGESIPGS|P}=p]
vhere m, t, and p are unsigned integers.

Interpretation:
Parameter SIZE TINE PAGES
Abbreviations T P, PGS
Units bytes seconds pages

Scale Factors (Values) K (10248) s (1)
: P (4096) M (60)

All parameters are optional; the default values are equivalent to
the specification

SIZE=48K TINE=10S PAGES=10

10.3 M15 *ALGOLW Specificatioms

*ALGOLW contains a routine which calls the coampiler to
process a single source progra®. A standard MTS object file |is
created. when the object program is subsequently executed, the
standard ALGOL W library is made available automatically; other
libraries can be provided explicitly. *ALGOLW is invoked by a
command of the following form:

$RUN *ALGOLW [SCABRDS=sourcef] [SPRINT=1listingf] [SEBRCOM=errorf]
SPUNCH=objectf [PAR=paranms]

The logical devices are used as followus:

{1) SCARDS supplies the source progran. The associated file
should contain exactly one ALGOL W source program (without
data or delimiting control lines). Note that only the first
72 characters of any line are inspected for source text.

{2) SPRINT receives the compilation listings.

(3) piagnostic messages produced by the compiler are directed to
SERCONM

(4) SPUNCH receives the object records containing the text of the
compiled progranm.

In the files associated with SPRINT and SERCOM, the first
character of each 1line is a logical carriage control code. 1In
the absence of explicit specifications, the 1logical devices
SCARDS, SPRINT, and SERCOM are associated with the pseudofiles
SOURCE#, *SINK#*, and *MSINK* respectively. The file associated
with SPUNCH will receive card image records. Object files
obtained by compilation of ALGOL W main prograams include a record
specifying implicit concatenation (i.e., a line beginning

10.3 MTS *ALGOLW Specificatioans 69

"SCONTINUE WITHM). The concatenated file is sequential and
cannot be processed correctly by most programs which operate upon
line files. Thus care is necessary 1in specifying operations
{such as copying) wupon ALGOL W object files; normally, the
nodifier "3-ICY" should be used. If errors are detected 1in the
source program, the object file will be empty or incomplete.

The optional parameter specifies the amount of working
storage, in bytes, available for compilation. It has the form

SIZE=a[K} P]

wvhere m is an unsigned integer. K and P are scale factors with
values of 1024 and 4096 respectively. Omission of the parameter
is equivalent to the specification

PAR=SIZE=56K

Execution of an ALGOL W object program contained in a file
objectf is specified by a command of the following form:

$BUN objectf [SCARDS=inputf] [SPRINT=outputf] [PAR=params)

Implicit concatenation mnmust be enabled when the file is loaded.
Explicit concatenation of object files can be used to include the
object code for precompiled procedures. Alternatively, such code
can be selectively loaded from a public or private 1library (see
the descriptions of *GENLIB, LOAD, etc.). In any case, the
effective input to the MTS loader must contain the object code
for exactly one ALGOL W main program, i.e., the object code
obtained by compiling a statement (cf.7. And 9.6). The logical
devices are used as followus:

(1) SCARDS is the standard input stream. Lines longer than 80
characters will be truncated (vith a warning =message on
SERCONM) . Implicit and explicit concatenation of input files
can be used.

{2) SPRINT is the standard output stream. Unless the parameter
NOCC 1is specified (see below), the first character of each
line is a logical carriage control code supplied by the
system and the maximum 1line 1length is 133. 1If NOCC is
specified, the control character is oamitted and the wmaxinmusm
line length is 132.

In the absence of explicit specifications, the logical devices
SCARDS and SPRINT are associated with the pseudofiles *SOURCE*
and *SINK* respectively.

Optional parameters can be supplied to control progran
execution. A SIZE parameter determines the amount of working
storage available; TIME and PAGES parameters place bounds upon
the resources available to the executing prograas. Details are
given by the following table:

70 10.3 MTS *ALGOLW Specifications
Format:

[SIZE=n{ K|P]] [{TIME{T}=t{M|S)] [{PAGES|PGS{P}=p] [CC]NOCC]
vhere m, t, and p are unsigned integers.

Interpretation:
Parameter SIZE TINE PAGES
Abbreviations T P, PGS
Units bytes seconds pages

Scale Factors (Values) K (1028) S (V)
P (4096) M {(60)

The TIME parameter establishes a limit upon the problem state CPU
time used. This limit can be overrun by an unpredictable amount
not exceeding 0.5 second. Any NTS limits take precedence over
the TIME and PAGES 1limits if (and only if) they are exceeded
first. The NOCC parameter suppresses the carriage control codes
normally supplied with each 1line output by the program. This
suppression is independent of the attributes of the output file
or pseudofile; if those attributes specify 1logical carriage
control, the first character of the actual output lime will be
used as the control code. 1In this way, explicit carriage control
can be programmed. When NOCC is specified, each group of 60
output lines is considered to be a page for the purpose of page
limit wonitoring. All parameters are optionmal. The execution
time and printed output are not monitored unless limits are
explicitly specified; the default parameter specification is
equivalent to

PAR=SIZE=36K CC
10.4 HIS System Error Messages
On occasion one or other of the messages

**SYSTEM ERROR. JOB ABORTED
PROGRAM INTERRUPT. PSW = hhhhhhhh hhhhhhhh

may appear; h indicates a hexadecimal digit. If the source of
the trouble is not obvious, take the listing and card deck, if
available, to a consultant.

If the time or page limits specified in a batch mode SIGNON
command are exceeded an error message is printed indicating which
of the limits has been exceeded then the job is terminated.

A
11. ALGOL ¥ IN 0S5

The two versions of the compiler referred to in section 9
are invoked respectively by the catalogued procedure XALGOLW or
one of the catalogued procedures ALGWC, ALGWCL and ALGWCLG.

1.1 QS Summary

——— o— gt

The needs of most users will be met by the ®recipe” given
below. More detailed information about this and other processing
options and facilities is contained in sections 11.2 and 11.3.

For batch processing, construct a card deck (or a file of card
image records for submission to the batch stream) which includes
the following sequence:

/7 EXBC XALGOLW

//7%.SYSIN DD =%

%ALGOL :t,p -—3

<{progranm> i repeat

%EOF ‘ { 0 or more times
<data> -—=J

/%

All output will be directed to the line printer. Note that only
the first 72 characters of an input record will be examined for
ALGOL W source text. The job should be rum in a region of at
least 120K bytes.

The parameters on the "%ALGOL" control record will lieit the
resources alloved for the execution (not compilation) of the
corresponding ALGOL ¥ program to t seconds of CPU time (default:
10 seconds) and p pages of printed output (default: 10 pages).
Any limits upon these quantities which are specified in the 0S
JOB or EXEC statenment take precedence if, and only if, they are
exceeded first. VNote that the diagnostics produced when ALGOL W
forces program termination usually are more helpful than the

corresponding 0S messages.

11.2 0S XALGOLW Specifications

The catalogued procedure XALGOLW, invokes a monitor which
supervises the compilation and immediate execution of a seguence
of ALGOL W programs. No object files are created; programs are
compiled directly into main memory and then executed.

The maximum size of ALGOL W programs which can successfully
be compiled and executed is determined by the amount of main
storage available. The minimum requirement for coapilation is
100K bytes, and capacity increases guickly with additional
storage. 120K bytes will be adegquate for eost prograas ot
exceeding 300 to #00 source records; larger programs will usually
require a larger region, as will those using large amounts of
storage during execution.

Data definition (DD) statements with the names SYSIN and
SYSPRINT must be provided; the corresponding data sets are used
as follows:

72 11.2 0S5 XALGOLW Specifications

{1) The SYSIN stream supplies card-image records containing the
source programs and data. FEach program to be compiled and
executed must be delimited by control records; the required
format is described below. Library files, data files, and
the like can be inserted into the source stream by use of the
facilities provided by 0S for the concatenation of data sets.

(2) The SYSPRINT stream receives the compilation listing(s), any
diagnostic messages generated by the compilation step({s), and
all output resulting from execution of the compiled
program(s). The associated data set will contain line-image
records, in which the first character of each logical record
is an ANSI carriage control character automatically supplied
by the systen.

These data sets have the following 0S attributes:

DD Name SYSIN SYSPRINT
Format ({(RECFHN) PB FBA
Record Length (LRECL) 80 133

A corresponding DD statement or data set label can supply the .
physical block size (BLKSIZE) and nuaber of buffers (BUFNO). The
block size must be an integral multiple of the 1logical record
length. If these attributes are not othervise specified, the
record length and block size are assumed to be identical, and two
buffers are provided. QSAM 1is used for all input/output
operations referencing these streams.

The stream SYSIN must contain a sequence of ALGOL W programs
and data. Any record beginning with the string "XALGOL®™ or the
string "%EOF" is considered to be a control record, and control
records must be used to delimit each program according to the
following schemes

%ALGOL [paranms] -—3

{program> | repeat

%YEQF | 0 or more tinmes
<data> —

The "XEOF" record can be omitted if there is no input data. Note
that only the first 72 characters of a record are examined for
ALGOL W source text. The "%ALGOL" control record can be used to
specify optional parameters. These establish 1limits on the
problem state CPU time to be used and the number of pages to be
printed during the execution {not compilation) of the progranm.
Any OS job or step limits take precedence if (and only if) they
are exceeded first. Details of parameter specification are given
by the following table.

Format:

[{mi[m]):s}) ,p]

vhere m, s, and p are unsigned integers.

11.2 0S XALGOLW Specifications 73

Interpretation:
Parameter m s P
Limit time tinme pages
Onits minutes seconds pages

Parameters must be coded between columns 8 and 72, inclusive, of
the corresponding control record. All parameters are optional;
the default values are equivalent to the specification

0:10,10
11. 2.1 Exanmples

(1) The cataloged procedure XALGOLW contains the following JCL
statements (Newcastle):

/77X RXEC PGM=XALGOLW
//STEPLIB DD DSN=SYS2.ALGCLW,DISP=SHR
/7/SYISPRINT DD SYSOUT=A

The input stream must contain a definition of SYSIN.

{2) The following Jjob step specifies the processing of a source
program in a private disk file, XXX99.SOUBCE on the volume
UNE020, plus some input data on cards. Output is to be
directed to a new data set, XXX99.RESULTS on the volunme
UNEO30.

//6 EXEC PGM=XALGOLW
//STEPLIB DD DSN=SYS2.ALGOLW,DISP=SHR
//SYSPRINT DD DSN=XXX99.RESULTS,UNIT=2314,

/7 VOL=SER=UNEO 30, DISP= (NEW,KEEP),

/77 DCB=BLKSIZE=1330,SPACE=(1330, (100, 25))
/7SYSIN DD DSN=XXX99.SOURCE,UNIT=2314,

/7 VYOL=SER=UNE0 20, DISP={OLD,KEEP)

// DD *

<data>

Ved

In this example, the source file must include the necessary
n%g»® control records. 1Its blocking factor is obtained fron
the data set 1label. In the output data set, the blocking
factor is 10, and 1000 lines of output are anticipated.

11.3 0OS ALGOL® Specifications

The cataloged procedures ALGWC, ALGWCL, and ALGWCLG, call
the ALGOL W compiler to process a single source program. A data
set containing standard 0S object modules is produced. When the
object modules are subsegqueatly edited and executed, the standard
ALGOL W library is made available automatically; other libraries
can be explicitly provided.

The maximum size of ALGOL W programs which can successfully
be compiled is determined by the amount of main storage
available. The minimum storage requirement is 100K bytes, and

T4 11.3 0S ALGOLW Specificationmns

capacity increases quickly with additional storage. 120K bytes
will be adequate for most programs not exceeding 400 to 500
source records; larger programs will usuvally require a larger
region.

pata definition statements for the input stream SYSIN and
the output streams SYSPRINT and SYSLIN are required. The
corresponding data sets are used as follows:

(1) The SYSIN stream supplies the source program. The associated
data set should contain exactly one ALGOL W source progran
(vithout data or "%" control records). Note that only the
first 72 characters of any record are inspected for source
text.

{2) The SYSPRINT stream receives the compilation listing and any
diagnostic messages produced by the conmpiler. The first
character of each logical record is an ANSI carriage control
code.

{3) The SYSLIN stream receives the object records contaiming the
text of the compiled progran.

The data sets have the following attributes:

DD Rame SYSIN SYSPRINT SYSLIRN
Format (RECFN) FB FBA PB)
Record Length (LRECL) 80 133 80

A corresponding DD statement or data set label can supply the
physical block size (BLKSIZE), which must be an integral multiple
of the record length, and the number of buffers (BUFNO). 1In the
absence of explicit specifications, the assumed values are the
record length and 2, respectively. Note that the linkage editor
will accept only a limited range of blocking factors, and the
attributes of the SYSLIN data set should be chosen according to
installation standards.

The SYSLIN stream will receive card image records. Object
files ottained by compilation of ALGOL W main programs include
the following linkage editor control statements:

INCLUDE SYSLIB({ALGOLX)
ENTRY ALGOLX

If errors are detected in the source program, or if the "3SYNTAX"
compilation directive (cf.9.3) is used, the object file will be
empty or incomplete, and the return code supplied will be 16.
Otherwise, the return code will be O.

The object modules produced must be processed by the linkage
editor btefore they carn be 1loaded and executed. A complete
discussion of all the relevant facilities provided by the linkage
editor and 0S library management utilities is well beyond the
scope of this manual. Such a discussion can be found in the IBA
Systems Reference Library publication, Linkage Editor and Loader,
Form GC28-6538. The following points should be ocbserved:

11.3 0S ALGOLW Specifications 75

(1) A DD statement defining SYSLIB must be provided; the
corresponding data set must be partitioned and must include
the standard ALGOL W library modules among its members.

(2) Normally, the object modules corresponding to the ALGOL ¥
main program will be contained in the SYSLIN data set, which
will be passed from the preceding compilation step(s).

(3) Object code for precompiled procedures can be contained in
the SYSLIN data set, in the SYSLIB data set, or is auxiliary
data sets specified by LIBRARY or INCLUDE statements in the
SYSLIN strean.

{4) In any case, the effective input to the linkage editor must
contain the object code for exactly one ALGOL W main prograsr,
i.e., the object code obtained by compiling a statement (cf.
7 and 9.6).

A complete ALGOL W program can be loaded and executed after
it has been converted to a load module by the linkage editor. DD
statements with names SYSIN and SYSPRINT must be provided; the
corresponding data sets are used as follows:

(1) SYSIN is the standard input stream and should contain
card-image records. Concatenation of data sets is permitted.
If there is no input stream, the definition DUMMY should be
used. '

(2) SYSPRINT is +the standard output stream. The length of all
logical records is 133. Unless the parameter NYCC 1is
specified (see below), the first character of each logical
record is an appropriate ANSI carriage control code, which is
automatically provided by the system. If MYCC is specified,
the first character of each output record constructed by the
ALGOL ¥ program itself is assumed to be the ANSI carriage
control code, and a blank is appended as the last character
of the record.

These data sets have the following 0S attributes:

DD HName SYSIN SYSPRINT
Format {(RECFNM) FB FBA
Record Length {(LRECL) 80 133

A corresponding DD statement or data set label can supply the
physical block size (BLKSIZE) and nusber of buffers (BUFNO). If
these attributes are not otherwise specified, the record length
and block size are assumed to be identical, and two buffers are
provided. QSAM is used for all input/output operations
referencing these streanms.

DD statements for any data sets referenced in {non-ALGOL W)
precompiled procedures are alsc required.

Optional parameters can be supplied as PARM information in
the 0S EXEC statement which invokes a compiled ALGOL W program.
These parameters establish limits upon the CPU time to be used
and the number of pages to be printed during execution of the

76 11.3 0S ALGOLW Specifications

program. Any limits upon these guantities which are specified
{(implicitly or explicitly) in the 0S job control language take
precedence if, and only if, they are exceeded first. Details are
given by the following table:

Format:

[{mi{m]):s}) ,[p){,HYCC]]

where m, s, and p are unsigned integers.

Interpretation:
Parameter m s P
Limit time time pages
Units minutes seconds pages

The MYCC parameter suppresses the carriage control codes normally
supplied with each line output by the program (see above). The
default limits are equivalent to the specification

PARN='1:00,60"

i.e., 60 seconds of CPU time and 60 pages of printed output.
Note that all parameters are positional; commas are required even
if operands are omitted.

11.3.1 Examples

{1) The cataloged procedure ALGWCLG contains the

statements (Newcastle):

following JCL

//C EXEC
//STEPLIB DD
//SYSPRINT DD
//SYISLIN DD
Va4
/7
//
/7L
/7
//SYSPRINT DD
//SYSUT1 DD
7/

//
//SISLIB DD
//SYSLMOD DD

EXEC

PGM=ALGOLW, REGION= 150K
DSN=SYS2.ALGOLW,DISP=SHR
SYSOUT=A

DSN=3TENP2,UNIT=2314,
VOL=SER=UNE999,

SPACE= (400, {8SIZE,15)) ,DISP= (NE¥,PASS),
DCB=BLKS IZ E=400
PGM=1ENL,PARN='LIST,NAP®,

COND= (4, LT,C) ,REGION= 100K
SYSOUT=A

DSN=4TEMP1,UNIT=2314,

SPACE= (1024, (451IZE,2)),
VOL=SER=UNE999,DCB=BLKSIZE=1024
DSN=5SYS2.ALGWLIB, DISP=SHR
DSN=44G (MAIN) ,UNIT=2314,

7/ SPACE= {CYL, {2, 1, 1)) ,DISP=(,PASS)

//7SYSLIN DD DSKN=%_.C,SYSLIN,

Va4 DISP=(OLD, DELETE)

/776G EXEC PGM=%_L.SYSLMOD,

/7 COND=((4,LT,C), (4,LT,L))

//SISPRINT DD SYSOUT=A

The input stream can contain definitioas of SYSIN for the

compiler (C,SYSIN),
program {G.S5YSIN).
but include job control statements for just the

are similar

linkage editor (L.SYSIN), and ALGOL W
The cataloged procedures ALGWC and ALGWCL

first one or two job steps respectively.

11.3 0S ALGOLW Specifications 77

(2) The following example uses the cataloged procedures ALGWC and
ALGWCLG to compile and execute an ALGCL W progran. One of
the procedures, written in ALGOL W, is to be compiled
separately. Additional precompiled procedures, originally
written in PORTRAN and located in the data set SYS2.LOAD.S5SP,
are also referenmced by the main program and are made
available to the 1linkage editor by concatenation to the
standard library.

/7/STEPY EXEC ALGHC

//C-SYSIN DD *

<Algol W procedure {source code)>
/%

//7STEP2 EXEC ALGHCLG

//C.SYSLIN DD DISP=(MOD, PASS)
//C.SYSIN DD *

<Algol W main program>

/t

//L.SYSLIB DD DSN=SYS2.ALGWLIB,DISP=SHR
7/ DD DSN=SYS2.LOAD.SSP,DISP=SHR
//G.SYSIN DD ¥

<data>

/%

11.4 0S System Ergor Messages
Oon occassion one or other cf the messages

*%% ABNORMAL JOB END ***x SYSTEM CODE=XXX
COMPLETION CODE - SYSTEM=XXX

may appear. If XXX is 222, 322 or 722 the job wvas terminated
respectively by the operator, by the system on exceeding the time
limit or by the system on exceeding the 1line limits. {These
messages imply exceeding time and 1line 1liamits in JCL, (not
%¥ALGOL) records.

78
APPENDIX I - CHARACTER ENCODINGS

The following table presents the correspondence betveen
printable string characters and their (EBCDIC) integer encodings.
This encoding establishes the ordering relation on characters and
thus on strings. Those characters in parentheses are not
normally available on the line printer. Integer codes not listed
below do not <correspond to any established character. {cf.
CODE, DECODE in section 8.1).

64 space 129 {a) 193 A 260 0
7% {c) 130 {b) 194 B 261 1
75 . 131 (<) 195 ¢ 262 2
76 < 132 {d) 196 D 243 3
77 (133 (e) 197 208 &4
78 + 134 (f) 198 F 245 5
79 i 135 (gq) 199 ¢ 246 6
80 P} 136 (h) 200 H 247 7
90 (1Y) 137 (i) 201 I 248 8
91 P 145 () 209 J 249 9
92 * 146 (k) 210 X

93) 147 (1) 211 L

9y : 148 (m) 212 n

95 - 149 (n) 213 N

96 - 150 {o0) 214 ©

97 / 151 (p) 215 P

107 . 152 (q) 216 Q

108 % 153 () 217 R

109 _ 162 (s) 226 S

110 > 163 (t) 227 T

111 2 164 {u) 228 U

122 : 165 (v) 229 ¥

123 " 166 (w) 230 W

124) 167 (x) 231 X

125 ' 168 (y) 232 Y

126 = 169 (z) 233 2

127 "

79
APPENDIX II - ALGOL W ERROR MESSAGES

Only error messages denerated by the compiler are listed
here. Occassionally contravention of operating systen
requirements lead to the generation of system error messages
(cf.10.4 and 11.4).

The compiler is divided into three passes: pass 1 reads the
program, lists it, and saves it in memory in a compressed
{(tokenized) form; pass 2 parses the program, examining each
statement to see if it is correctly formed; pass 3 generates the
360 machine code for the prograa. Each pass 1is capable of
detecting a different set of errors. {There is also a fourth,
loader, pass that on rare occasions may generate messages.)
Errors may also occur while a compiled program is executing;
these are called run-time errors.

All error messages from passes 1, 2 and 3 are of the form:
ERROR zxxx NEAR COORDINATE YyYYyy —~ Rmessage
vhere zxxx is the error number, z is 1, 2 or 3 according to the
pass which generates the message and yyyy correspoands to one of
the coordinate numbers in the first column on the prograe
listing. If there are several statemeants on a line, only the
coordinate of the first one appears on the prograa listing.
II.1 Pass One Error Messages
1001 INCORRECTLY FORMED DECLARATION
a) STRING(x) or BITS{(x), where x is not a number.
b) STRING(0) or STRING(>256).
¢) BITS {not 32).
1002 INCORRECT CONSTART
a) More than 256 digits.
b) a bad exponent.
1003 MISSING "END"
A final ®." or a control card encountered before an END
matching each BEGIN. {(Check the block numbers in the
second column of the program listing.)
1004 UNMATCHED “END"™ (DELETED)
An END encountered after wvhat appeared to be the fimal END.
#hen possible, the innermost END is deleted. (Check the

block numbers in the second column of the program listing.)

1005 MISSING ")

80

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

II.1 Pass One Error Messages
STRING{x or BITS{x with no closing ") ",
ILLEGAL CHARACTER
An erroneously punched or overpunched character.
Overpunched characters may print as blanks; the card should
be inspected in this case.
WARNING: MISSING FINAL "."
A control card encountered without a preceding ".".

INVALID STRING LENGTH

A string constant of length >256, or a completely enpty
string; a guote may have been onmitted.

INVALID BITS LENGTH

a) "#v not followed by hex digits.

b) "#" folloved by more than 8 hex digits.
MISSING " (¥

REPERENCE not followed by "(".

ERROR TABLE OVERFLOW

More than 50 error messages from pass 1. Subseguent errors
are not listed.

COMPILER TABLE OVERFLOW

The program is too big to fit in memory during compilation.
There is no more room in one of the tables constructed by
the compiler. On re-compiling with more memory, the tables
will be bigger.

ID LENGTH > 256

Overlength identifier.

UNEXPECTED "%

An apparently final"." not followed by a control card, such
as in a constant with an inadvertant space: . 123

TCC MANY RBCORD CLASSES

Only 15 are allowved.

WARNING: "ELSE™ PRECEDED BY (DELETED) %"

The sequence ";ELSE"™ has been replaced by "ELSE®

TOO MANY BLOCKS

I1.1 Pass One Error Messages 81

Either a block is enclosed in more than 29 other blocks or
the total number of blocks, procedure declarations and for
staterents exceeds 500.

11.2 Pass Two Error Messages
All pass 2 error messages are supplemented by:
{FOUND NEABR "...")
vhere "...." indicates a pair of symbols. In general, the first
symbol is the input symbol or phrase after which the error was
detected; the second is the next sysbol to be scanned.

If any pass one or pass two error messages occur {other than
the warmings 1007, 1016, 2013 and 2031), then compilation stops
at the end of pass two. Several error messages may be generated
for what is essentially a single mistake.

2001 MORE THAN ONE DECLARATION OF "XXXX™ IN THIS BLOCK

The variable XXXX has been declared more tham once in the
samse block.

2002 “XXXX® IS UNDEFINED

The variable or 1label XXXX has not been declared in the
current block or in one containing it.

2003 Currently there is no error with this number
2004 Currently there is no error with this number.
2005 HNISMATCHED PARAMETER

An actual parameter in a procedure statement is not of a
type compatible with the formal parameter in the procedure
declaration.

2006 INCOBRRECT NUMBER OF ACTUAL PARAMETERS

The number of actual parameters in a procedure call does
not egqual the number of formal parameters in the procedure
declaration.

2007 INCORRECT DIMENSION
a) The number of dimensions of an actual parareter does
not equal the number of dimensions declared for the

corresponding formal parameter.

b) The wrong number of subscripts have been used in an
array element reference.

2008 DATA AREA EXCEEDED

The data space for each PROCEDURE or block with
declarations is 1limited to 4096 bytes. Read the

82

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

I1.2 Pass Two Error Messages
suggestions for 3001.
INCORRECT NUMBER OF FIELDS

In creating a record, too many or too few initial values
have been specified.

INCOMPATIBLE STRING LENGTHS
a) In STRING1 := STRING2 , STRING2 is longer than STRING1.

b) In STRING3(x]y) , ¥y is larger tham the declared size of
STRING3.

c) A long string has been passed to a shorter forsal
string parameter.

INCOMPATIBLE REFERENCES

A reference variable refers to a record class to which it
is not bound.

BLOCKS NESTED TOO DEEPLY

Non-trivial blocks (i.e., blocks with declarations, or the
blocks associated with a PROCEDURE) or actual parameter
lists are nested more than eight deep. The error is
detected early in the ainth block.

WARNING: ":" SHOULD NOT FOLLOW EXPRESSION

In BEGIN ...<expression>; END the semi-colom is incorrect
but ignored.

REFPERENCE MUST REPER TO RECORD CLASS
In REPERENCE (XYZ)... , XYz is not a record class.
EXPRESSION MISSING IN PRCCEDURE BCDY

A function PROCEDURE must have its final value specified by
an expression standing alone immediately before the END.

IMPROPER COMBINATION OF TYPES

Mixing incompatible types as alternatives of a conditional
or case expression.

RESULT PARAMETER MUST BE A VARIABLE
In a procedure declaration, a formal parameter is declared
e«e RESULT xyz, but a call to that procedure has passed an
expression which is not a variable.

PROPER PROCEDURE ERDS WITH AN EXPRESSION

A procedure which returns no value nonetheless ends with an
expression. (This will happen if a final assignment

2019

2020

2021

2022

2023

2024

2025

2026

2027

I11.2 Pass Two Error Nessages 83
statement is using =, instead of :=).
HYXXX" CANNOT FOLLOW "YYYY"™ HERE
The input up to the symbol denoted YYYY is part of a valid
ALGOL W program, but no valid ALGCL W program can continue
with the symbol XXXX.
ARRAY USED INCORRECTLY
A simple variable must be used here.
TOO MANY CONSTANTS IN PROCEDUORE
Only 256 different constants {(approximately) are allowed.
INCORRECT STRING LENGTH
In S(xly) ,» Y is zero, or greater than 256.
COMPILER TABLE OVERFPLOW
The progran is too big to fit into wmemory during
compilation -—- there is no more room for the parse trees
that represent the program. Re-compile with more memory or
compile some procedures separately.

TCO MANY PROCEDURES

Only 255 different procedures or blocks with declarations
are alloved by the compiler.

CONSTANT OUT OF BARGE

a) The absolute value of an integer is greater than
(2¢*31)-1 (9+ digits).

b) The absolute value of the adjusted exponent in a real
number is greater than 75. The exponent written is
first adjusted to include the number of digits written
in front of the decimal point.

INDEX OF ABRAY OR STRING MUST BE INTEGER

a) In S{x]y) , x is not an expression of integer type.

b) An array subscript is not an expression of integer
type.

INCORRECT OPERAND TYPE(S) FOR XXXX
XXXX is a unary operator.

a) LONG is applied to something which is already LONG, or
to STRING, BITS, LOGICAL, or REFPERENCE.

b) SHORT is applied to something which 1is neither LONG
REAL nor LONG CONMPLEX.

84

2028

2029
2030

2031

I1.2 Pass Two Error MNessages

c) -~ {not) 1is applied to something which is neither
LOGICAL nor BITS.

d) Prefix + or - is applied to something which is LOGICAL,
STRING, BITS, or REFERENCE.

e) ABS is applied to something which is LOGICAL, STRING,
BITS, or REFERENCE.

f) 1In recordvariable(x) , x is not a REFERENCE.
g) In FOR I:=X... , X is not an integer expression.

h) In various other contexts, an INTEGER or LOGICAL
operand is required.

INCORRECT OPERAND TYPE (S) FOR XXXX

XXXX is a binary operator. Even when the error is in the
first operand, the error is detected after bpgth operands
are ianspected.

a) AND or OR is applied to expressions which are not both
BITS or both LOGICAL.

b) A relational operator (like >) is applied to something
which is COMPLEX, LOGICAL, or REFERENCE.)

Cc) SHL or SHR is applied to something which is not BITS,
or is followed by either an expression not enclosed in
parentheses or a value wvhich is not of integer type.

d) In x IS recordclass , x is not of type REFERENCE.
e) 1In x**y , y is not of type INTEGER.

f) In a FOR statement, the UNTIL expression is not of type
INTEGER.

g) In various other contexts, an INTEGER type operand is
required.

Currently there is no error with this number.
ASSIGNMENT INCONMPATIBILITY

An attempt to assign an expression of one type to a
variable of a different type (or pass an actual parameter
to a formal parameter of a differeat type). The only
automatic conversions allovwed are INTEGER to REAL, INTEGER
to LONG REAL, REAL to/from LCNG REAL, INTEGER/REAL/LONG
REAL to COMPLEX/LONG COMPLEX, COMPLEX to/from LONG COMPLEX.
(REAL cannot be assigned to INTEGER without using TRUNCATE,
ENTIER, or ROUND.)

WARNING: NAME PARAMETER SPECIFIED

In PROCEDURR declarations, it is more often the case that

IT.2 Pass Two Error Messages 85

formal parameters have VALUE specified. Check that the
name specification is necessary.

2032 SIMPLE VARIABLE ID USED INCORRECTLY

The identifier in a substring designator is not type
STRING.

2033 ... FURTHER MESSAGES SUPPRESSED

More than 64 errors detected, compilation continues with
further messages suppressed.

2999 DEBUG TABLE OVERFLOW

1f ?DEBUG,x is specified with x egual to 2, 3, or 4, then a
table is created wvith a fixed maximum of 448 entries, where
one entry is used for each GROUP of statements that all
occur together with no labels, branches or conditional
expressions. All the statements in such a group are
guaranteed to be executed the same number of tismes. Also,
this message occurs if the compressed fora of the program
occupies more than 65536 bytes of memory (the compressed
form is used to generate the listing with the statement
counts attached).

1.3 Pass Three Error HNessages

All pass 3 errors are disastrous, so compilation terminates
immediately. After any pass 3 error, a table of triples,
{(coordinate number, byte offset, byte 1length), is listed,
indicating how much code was generated for each statement in the
current program segment. The last entry of this table and the
last two byte lengths are occassionally not meaninmgful.

3001 PROGRAM SEGMENT OVERPLOW

This error message occurs because of a design comnstraint of
the compiler: the total amount of machine code and
constants for any PROCEDURE or other block with
declarations must be 1less than 8192 bytes (a segment of
code). All of the constants for a block are allocated in
front of the first statement. Therefore, if the byte
offset of the first statement is very large, constants are
taking up too much space. This sometimes happens in
programs with many string constants (tem 80-character
string constants take up 800 bytes). It is necessary to
reduce the number of statements and/or constants in the
block; this can be achieved by introducing new procedures
or by inserting at least one declaration into some internal
block(s), thereby forcing part of the block that was too
big into more than one segment of code.

3002 CONMPILER STACK OVERFLOW

A push-down stack, used by the compiler while generating
code, has overflowed. A program segment overflow probably
was iaminent. The remedies suggested in the case of the

86 I1.3 Pass Three Error Nessages
message PROGRAM SEGMENT OVERFLOW (3001) apply. .

3003 COMPILER LOGIC ERROR
Internal consistency checks performed by the compiler have
failed. Take the program listing and (if one exists)
matching card deck, exactly as it is, to a consultant.

3004 PROGRAM AREA OVERFLOW

There is insufficient space in memory to contain the
compiled program. Re-compile with more memory.

3005 DATA SEGMENT OVERPLOW
The data for each PROCEDURE or BBEGIN block with
declarations is 1limited to 4096 bytes. Read the
suggestions for 3001.

3006 COORDINATE TABLE OVERFLOW
The table being constructed to supply the coordinate nuaber
in run-time error messages has overflowed. Re-cosmpile with
Bore nemory.

3007 TOO MANY PROCEDURE CALLS

References to only 63 procedures are allowed within any
single procedure.

I1.4 Loader Error Messages (XALGOL W only)
Loader error messages are all of the form:
**%* LOADING ERROBR-message

Like pass 3 messages, these are disastrous and terainate
processing.

INSUPFPICIENT STORAGE

Insufficient space to load the program. Re-run with more
memory.

NO EBXECUTABLE STATEMENTS

No main program was loaded, only external prodedntes.
TOO MANY PROCEDURES

Only 96 program segments are allowed by the loader.
UNDEPINED GLOBAL NANE - XXX

An external procedure was declared, but not loaded.

IT1.5 Run Time Error Messages 87

o
=
=

Time Error Messages

-
o

11 run error, messages are of the form:

RUN ERROR NEAR COORDINATE yyyy IN procedure name — message

After a raun error, a post-mortem dump of all of the progranm
variables is produced, unless it is explicitly suppressed
with a @DEBUG,0 card. To keep the dump reasonably small,
at most eight values are dumped from an array. If the same
jdentifier is declared in many blocks (note that the index
variable in a FOB loop is considered to be declared in a
block around just the FOR statement), then that identifier
will be listed many times. Variables which have never been
assigned any meaningful value are printed as "?%,

ACTUAL-PORNAL MISMATCH IN PROCEDURE CALL, PARAMETER #xx

The actual parameter passed is not assignment compatible
with the formal paramseter.

ARRAY SUBSCRIPTING
An array subscript is not within the declared bouands.
ARRAY TOO LARGE

The first n-1 dimensions of an array declaration define too
many elements. The product of the first =n-1 dimension
lengths (upper bound - lower bound + 1) multiplied by the
size of a single element must be strictly less than 32768.
The element sizes are:

logical 1
integer, real, bits,
reference)
long real, complex 8
long complex 16
string length of a single string

ASSERTICN x PAILED

An assertion is not true, x is a tuanning count of howv many
prior assertions vere true.

ASSIGNMENT TO NAME PARAMETER
Attempt to assign to an actual parameter which is not a
variable, but is instead an expression, a constant, or a
control identifier.

CASE SELECTION INDEXING

An index in a case statement or case expression is less
than 1 or greater than the number of cases.

DATA AREA OVERFLOW

88 II.5 Run Time Error Messages

No more storage is left for variables. This can happen if
a procedure gets in a loop calling itself recursively, or
if there really is not enough memory.

DIVISION BY ZERO
May also be caused by O#%*({-n).

EXP EBRROR
The argument to EXP must be less than 174.67.

INCOMPATIBLE PIELD DESIGNATOR
An attempt to access a field of a record using a reference
which does not designate a record of the corresponding
class. (It might be null or undefined).

INCORRECT NUMBER OF PARAMETERS

The number of actual parameters in a procedure call is
different from the number of formal parameters declared in
the called procedure.

INTEGER OVERFLOW

An integer operation produced a nuamber with an absolute
value greater than (2*%31)-1.

LENGTH OF STRING INPUT

The string read is longer than the declared length of the
receiving string variable. Possibly a quote has been
omitted in the data or two adjacent strings in the data
have no separating blank causing the double quote to be
interpreted as a single quote inside the first string.
(Note that gquotes in columas 80 and 1 of succeeding cards
are adjacent).

LN/LGCG ERROR

A negative or zero argument.
LOGICAL INPUT

The guaﬁtity read was not TRUR or PALSE.
NULL OR UNDERFINED BREFERENCE

An attempt to access a record field using a reference which
is null or undefined.

NUMERICAL INPUT
The next data item either is not a correctly formed number

or is not assignment compatible with the variable in a
READON or READ statement.

II.5 Run Time Error Messages 89
OVERFLOW
A real operation produced a number with an absolute value
greater than 7.2'+75, This may occur wvhen dividing by a
very small number, such as in 1'+#50/1'-50.
PAGE ESTIMATE EXCEEDED
The page estimate on the control card (cf. 10 or 11) is
exceeded. Note that any tracing (@DEBUG,3 or 4) output is
included in this page limit.
PROGRAM CHECK #an
The compiler or the code it generated is in error. If this
happens, take the listing and (if one exists) matching card
deck, exactly as it is, to a consultant.
READER ECF
No more data cards. A control card (cf. 10 or 11) wvas read
instead. This is one way to terminate programs, but not a
recoarrended one.
RECORD STORAGE AREA OVERFLOW
No more storage exists for records.
REFERENCE INPOT
References cannot be read.
SIN/COS ERROR
See the domain restrictions in Section 8.2
SQRT ERROR
A negative argument.
STRING INPUT
The next data item is not a correctly formed string.
SUBSTRING INDEXING
The substring selected extends off one end of the string.
TIME ESTIMATE EXCERDED
The control card time estimate is exceeded (cf. 10 or 11).
ONDERPLOW
A real operation produced a number with an absolute value
less than 5.4'-79, but not exactly zero. This may occur

vhen dividing by a very large number, such as in
1'-50/1'+50.

