Pascar Users Group

Pascal News

Communications about the Programming Language Pascal by Pascalers

E&w&m'ﬂ*

® Pascal Standards: Progress Report

e Status Report on Version 3.0

WRITENUM — A Routine to Output Real Numbers
TREEPRINT — A Package to Print Trees on Character Printers

® Three Proposals for Extending Pascal

® Announcements

Number

24

JANUARY 83

David T. Craig
736 Edgewater

EX LIBRIS:

Wichita, Kansas 47230 (USa)

]

[#




POLICY: PASCAL NEWS (Jan. 83)

e Pascal News is the official but informal publication of the User's Group.

Purpose: The Pascal User's Group (PUG) promotes the use of the programming language Pascal as
well as the ideas behind Pascal through the vehicle of Pascal News. PUG is intentionally de-
signed to be non political, and as such, it is not an “entity” which takes stands on issues or
support causes or other efforts however well-intentioned. Informality is our guiding principle;
there are no officers or meetings of PUG.

The increasing availability of Pascal makes it a viable alternative for software production and
justifies its further use. We all strive to make using Pascal a respectable activity.

Membership:  Anyone can join PUG, particularly the Pascal user, teacher, maintainer, implementor, distrib-
utor, or just plain fan. Memberships from libraries are also encouraged. See the ALL-PUR-
POSE COUPON for details.

® Pascal News is produced 3 or 4 times during a year; usually in March, June, September, and December.

e ALL THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a virtue) for Pascal News single-
spaced and camera-ready (use dark ribbon and 15.5 cm lines!)

® Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST TO THE
CONTRARY.

® Pascal News is divided into flexible sections:
POLICY — explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION — passes along the opinion and point of view of the editor together with changes
in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL — presents news from people, conference announcements and reports,
new books and articles (including reviews), notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS — presents and documents source programs written in Pascal for various algorithms, and
software tools for a Pascal environment; news of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance, style, output convenience, and general
design.

ARTICLES — contains formal, submitted contributions (such as Pascal philosophy, use of Pascal as a teaching
tool, use of Pascal at different computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS — contains short, informal correspondence among members which is of
interest to the readership of Pascal News.

IMPLEMENTATION NOTES — reports news of Pascal implementations: contacts for maintainers, implemen-
tors, distributors, and documentors of various implementations as well as where to send bug reports. Qualitative
and quantitative descriptions and comparisons of various implementations are publicized. Sections contain
information about Portable Pascals, Pascal Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.




Pascal News

Communications about the Programming Language Pascal by Pascalers

JANUARY 1983 Number 24

42

45

47

COMPILERS NOTES

APPLICATIONS
A Pascal Bibliography By Tony Hayes

PASCAL STANDARDS

Pascal Standards: Progress Report By Jim Miner
Status Report on Version 3.0 of the Pascal Test Suite By B.A. Wickmann

ANNOUNCEMENTS

Distribution of the Edison System
Pascal Chosen as Sil

Pascal: A Problem Solving Approach
Modula-2

ARTICLES

WRITENUM — A Routine to Output Real Numbers
By Doug Grover and Ned Freed
TREEPRINT — A Package to Print Trees on any Character Printer
By Ned Freed and Kevin Carosso
Three Proposals for Extending Pascal By R.D. Tennent
The Where-Clause: A Proposed Extension to Pascal By R.D. Tennent
Proposals for Improved Exception Handling in Pascal By R.D. Tennent
The Definition Block: A Proposed Extension to Pascal By R.D. Tennent

OPEN FORUM

IMPLENATION NOTES COUPON
SUBSCRIPTION COUPON
LICENSE APPLICATION



Gompeten s Notws Compiton s Notes Compiten's Notes Compaten's Notes Competon s Notss Compiton's Notes Compit

Hello

This is Pascal News and my name is Char-
lie Gaffney. Much has happened since I re-
ceived my March #22-23 Issue. I am the pub-
lisher of USUS News. USUS is the UCSD p-
System User Society. The p-system was de-
veloped to bring Pascal to micro computers.
Our USUS News was modeled on Pascal
News. We have a lot of information in USUS
but it was a chore to read because of bad orig-
inal and photo copy material used for printing.

I sought a typesetter and found we could
typeset and print for only 10% increase in
cost. This is a small premium cost to have a
readable newsletter. We typeset in August and
received many compliments so far.

I thought of our model Pascal News and
called Rick Shaw to explain our (USUS) im-
provement and ask if he needed help.

But Rick had his own story to tell. The
work at Pascal Users Group was not per-
formed by a group but by one man, Rick Shaw.
He was hard pressed to keep up with the busi-
ness of PUG.

An offer had been made by the ‘‘Journal
of Pascal & Ada’’ to take all pending articles
and publish them.

I made a counter offer to maintain PUG
as it is under new management. Rick thought
that was a nice idea, but the problems would
persist and PUG would fail either now or later.
After three phone calls Rick decided to let me
try.

The News will be typeset and I hope you
approve of our new appearance. The articles

you submit may be in any format because they
will now be typeset. It is possible to enlarge
the program listings if they are submitted in a
narrow format of 15.5 cm wide.

Business

I have decided to pay a small business to
update:

1. the member list

2. new and renew members

3. banking records

Membership costs have gone up but if
you pay for two years the third year is free.

Back issues have tied up a great deal of
money. We have articles and programs just
waiting for you. Buy a set. Buy a complete set.
Buy a set for your friends.

A little about me

I am an electrician, and I work for Chev-
rolet in Parma, Ohio. I have no college edu-
cation and no formal computer training. My
experience with computers involved the pur-
chase of a Western Digital microengine, 16 bit
computer. The computer uses p-code as de-
fined by UCSD p-System and directly imple-
ments the code without an interpreter. Pascal
News and USUS News, and 25 text books,
have been my teachers. I thank them and each
of you.

Charlie

Compilers Notes



A Pascal Bibliography

By Tony Heyes
Blind Mobility Research Unit,
Department of Psychology,
University of Nottingham
England

Introduction

The Pascal Bibliography is a package of programs
written in standard Pascal and should therefore be eas-
ily transported. It enables users to store references and
to retrieve them either by AUTHOR name or by KEY-
WORD:; or logical combinations of AUTHORS and
KEYWORDS. The bibliography is designed for human
use; it uses very explicit prompts.

Design Philosophy

The bibliography consists of a collection of ITEMS.
Each ITEM takes the form of:-

One line devoted to AUTHOR or ADDRESSEE
names.

Two lines devoted to TITLE or ADDRESS.

Two lines devoted to LOCATION.

DATE ITEM NUMBER.

Two lines devoted to KEYWORDS.

For example:-

HEYES A.D.,FERRIS A.J.,ORLOWSKIR.J.

COMPARISON BETWEEN TWO METHODS
OF RESPONSE FOR

AUDITORY LOCALISATION IN THE AZI-
MUTH PLANE.

J. ACOST. SOC. AMER., 58; 1336-1339

1975 260

DEAFNESS,LOCALISATION,AUDITORY
DISPLAYS

STEREOPHONIC SOUNDS,KINAESTHESIS

If ITEMS are addresses the convention is to store
the address on the two lines of title.

For example:-

BLOGGS J.B.

Mr.J.B.Bloggs\ 13 Fishpond Rd.\ Beeston,
Nottingham\ NG7 2RD\ U.K.

Tel 0602-251234

1980 27
ADDRESS,CIRCULATION LIST,XMAS
CARD

Note the use of the backslash [\] to indicate the
start of a new line. Note also that additional information

Applications

such as the telephone number can be stored on the lo-
cation lines. Note, finally, the date has little meaning in
this context.

Items may be located by running the program ‘‘bibout”’.

Items may be APPENDED or CHANGED by running
the program *‘bibin’’.

Both programs are well supplied with prompts and are
very simple to use.

Since additions and changes require that the cur-
rent DICTIONARY be recompiled and this takes time,
the actual changes take place during the night. The in-
structions to implement the changes reside in a PEND-
ING TRAY until the night time run. The user will re-
main unaware of this slight restriction unless he tries
to locate an ITEM during the day on which the ITEM
was loaded.

Method of Use

The following assumed the use of the UNIX op-
erating system. Login with your user name, give your
password, respond to the first system prompt ‘‘%’’ with
*‘cd bib”’, ie. change directory to *‘bib’’. In answer to
the next system prompt, ‘“%’’, you may select any one
of the programs from within the package.

These are:-

a) ‘‘bibbin”’ to enter new items or to change
an ITEM.

b) ‘‘bibout”’ to search the bibliography for
an ITEM.

c) “‘outdict” to produce a hard copy of the
current DICTIONARY.

d) “cat scratch Ipr” to output a hard copy of the
SCRATCH FILE.

NEW USERS SHOULD ASK IF THEY MAY
HAVE ACCESS TO AN ESTABLISHED BIB-
LIOGRAPHY AND THEN TRY USING ‘‘bi-
bout’” TO LOCATE ITEMS OF INTEREST.

To logout respond to the system prompt ‘%’ by typing
“‘control 2.

The Programs
a) “‘bibin”’
The opening prompt allows the selection of one
of the following options:-

APPEND



b)

The prompts should be sufficiently explicit, but
note:-

(1) Authors and keywords should be separated by
commas. Since they are used in the dictionary
they should not spill over the end of a line.
They can be any length but only the first 20
characters are significant.

(2) The terminal will probably be set to produce
lower case letters. The program will automat-
ically convert them to upper case. If you wish
to override this, begin each line of text with
a backslash [\].

(3) The date must be a single integer e.g. 1980.

(4) If addresses are to be stored use the two title
lines, close pack but indicate new lines with
a backslash [\].

(5) A personal local storage reference may be
kept on the second location line. It should be
enclosed in square brackets; e.g. [BM760]
means that a copy of this ITEM is in the BM
library, entry number 760.

CHANGE
Answer the prompts but please take note of the
following:-

1) You must know in advance the ITEM number
of the ITEMS you require to change.

2) You have to retrieve the ITEMS from the bib-
liography so CHANGE is relatively slow; be
patient. It saves time, if you are changing more
than one ITEM to make the changes in nu-
merical order of ITEM number.

3) You retrieve the ITEM to be changed from the
bibliography, the changed ITEM goes into the
PENDING TRAY. If you change the same
ITEM more than once in a single day only the
last version will survive.

SPECIAL FACILITY

This option moves the contents of the SCRATCH
file into the PENDING tray. It can be used for mov-
ing ITEMS from one bibliography to another. Since
SCRATCH is a text file, ITEMS may be changed
using an editor and then loaded back into the PEND-
ING tray. (Clever stuff!!).

“‘bibout’’

The computer will count the ITEMS in the bibliog-
raphy and then offer the option of producing a
HARD COPY of the dictionary or doing a SEARCH
for ITEMS.

SEARCH

You may either search by NUMBER or, more
usually by using the DICTIONARY.

You may opt to send the results either to the TER-
MINAL or to the SCRATCH FILE for subse-
quent printing.

SEARCH by NUMBER

The search is terminated by asking to search for
item number zero [0].

A block of ITEMS may be searched for by asking
to search for item number minus one [—1]. You
will then be asked for the lowest and the highest
item numbers of the block.

SEARCH by DICTIONARY

You will be asked for a word i.e. an AUTHOR

name or a KEYWORD. The computer will look
this up in the DICTIONARY and list the ITEM
numbers of all ITEMS containing this word in
their AUTHOR or KEYWORD string. If you are
doing a single word search answer the next prompt
will a full stop [.], and then the instruction to
LOOK UP. If, however, it is a multiple word
search give the next word. Once again the corre-
sponding ITEM number list will be printed out.
The answer to the prompt ‘“ AND, OR or NOT”’
enables you to combine the current ITEM number
list with the previous ITEM number list. For
instance:-
AND Only numbers present in both lists are
retained.
OR All numbers from both lists are
retained.
Numbers present in the current list are
deleted from the previous list.
A new current list is printed out showing the results
of the selection. The search sequence may be con-
tinued for any number of logical combinations of
words. At any time a search for the ITEMS in the
current list may be initiated by giving a full stop
[.]. After which you may either LOOK UP the se-
lected ITEMS or, if you have made a mistake in your
list combinations simply RESTART. There is one
special word, namely ***, this word will match all
the dictionary.

NOT

“outdict”’

No prompts and no option, simply type ‘‘outdict”’
in answer to the system prompt ‘‘%’’ to obtain a hard
copy of the current DICTIONARY.

Note, you must have first prepared a copy of the
DICTIONARY by running the appropriate HARD
COPY option of ‘‘bibout’’.

“‘opr scratch’’

This program is run to obtain the printed output from
“bibout’’, provided the option had been chosen to
send the output to the SCRATCH FILE.

No prompts and no options, simply type ‘‘opr
scratch’’ in answer to the system prompt ‘%"’ to
obtain a hard copy of the contents of the SCRATCH
FILE.

N.B. If you would like to list the SCRATCH FILE
to the terminal to check the contents then run ‘‘cat
scratch’’.

Acknowledgements

I gratefully acknowledge the encouragement and

support I have received from Roger Henry and Chris
Blunsdon.

The bibliography was originally intended for use

by the members of the BLIND MOBILITY RE-
SEARCH UNIT it is however available to any mem-
bers of the Pascal Users Group. Would anyone wishing
to take up this offer please contact Tony Heyes to ar-
range medium of transportation.

NOTES FOR IMPLEMENTORS

The following notes outline the steps the imple-

Applications



menter should take in order to establish a new bibli-
ography. After this groundwork, the user can use the
shell commands bibin, bibout, and outdict to build and
manipulate the bibliography.

1. The bibliography system requires 6 workfiles named
b1 to b6. The recommended practice is for the user
to devote a directory to the bibliography, say ‘user/
bib’. The workfiles can be created easily using the
cat command. E.g

cat > bl VA

File b3 requires a link named scratch. This can be
created by the command —

1n b3 scratch

2. b6 is used as a temporary scratch file during the
overnight run. It grows to be as large as bl. If there
is insufficient room on the user’s disc b6 may be
coerced on to another disc.

3. The bib directory must contain the following shell

commands:-
bibin Bibin.out b1l b2 b3 b4 b5
bibout Bibout.out bl b2 b3 b4 b5
bibupdate Bibupdate.out bl b2 b3 b4 bS b6
outdict (1pr b4;rm b4; >bd)&

4. Finally, an entry must be made in the UNIX table
‘crontab’ so that bibupdate will be executed during
the night.

program Bibin(input,output,bank,dict,scratch,dlist,PendingTray);
“(* To ADD, CHANGE or RENOVE items,

astructions left in a PendingTray file 'pending’,

actual changes made by running "Bibupdate.p” *)

(* written by Tony Heyes, Blind Mobility Research Unit,
Department of Psychology, The University,

Nottingham, U.K. *)

label 10;
const LineLn = 70;
RowLn = 20;

HiTag = 10000;
llonDate = -1066;

type string = packed array [l..LinelLn] of char;
iten = recoré
authors,titlel,title2,
placel,place2 : string;
date : integer:
keyl,key2 : string
end;
word = packed array [1..20) of char;

row = array [l..RowLnl! of integer;
dic = record
nane : word;
numbers 2 row;
cont : boolean
end;
Taglten = record
tag : integer;
entry : iten
end;

var enpty,entry : item;
bank : file of item;
PendingTray,TenpPendingTray :
dlist,scratch : text;
dict : file of uic;
TagEntry : Taglten;
ch,AppendOption,ChangeOption,MainOption,HelpOption,

SpecialOption : chaz;[chge : boolean;

a,n,nn,count : integer;

file of Taglten;

procedure InlChar (var ch : char);

(* to read the first character of a word typed into the terminal *)

begin
ch := input”;
while not (ch in ('A'..'2','a'..'2']) do

Applications

begin (* skips along until first character found *)
get(input);
if eoln(input)
then
begin

writeln;
write('ERROR: character required .... ")
end;
ch := input”
end;
while not eoln(input) do
get{input)
end; (* of InlChar *)

(* skips over rest of line *)

procedure InlInt (var int : integer);
(* to read an integer and not cause a fatal error if a
character is given *)
var ch : char;
a,OrdZero :
NegFound
begin
repeat (* skips along until integer is found *)
get(input);
if eoln{input)
then
begin
writeln;
write('ERROR: digit required .... ')
end;
ch := input”
until ch in ['=','+','0'..'9'};
if ch='-"
then
begin
HegFound := true;
get{input);
ch := input”
ena
else
begin
NegFound := false;
if ch="'+"
then
begin
get(input);
ch := input”
end

integer;
: boolean;

end;
a := 0;
Ordzero := ord{('0');
repeat
a := 10*a+ord(ch)-OrdZero;
get(input);
ch := input”
until not (ch in ('0'..'9'));
while not eoln(input) do (* skips over rest of line *}
get{input);
if NegFound
then
int := -a
else
int := a
end; (* of InlInt *)

procedure VDUinString(var str : string);
(* to input from terminal *)

var i,n : integer;
¢h : char;
AllCaps :
begin
n := 0;
AllCaps
repeat
n := n+l;
read(ch) ;
if (n=1) and (ch=' ")

boolean;

1= true;

then
n := 0;
if (n=1) and (ch='\')
then
begin (* defeat automatic shift with *\' *)
AllCaps := false;
n =20
end;
if n<>0
then
begin
if AllCaps
then

if ¢ch in ['a'..'z')



then
ch := chr(ord(ch)=-32);
strin] := ch
end
until eoln(input);
for i:=n+l to:LineLn do
strfi) := ' !
end; (* of VDUinString *)

procedure ScratchInStr(var str : string);
(* input from file scratch *)
var n,i : integer;
ch : char;
begin
if not eof(scratch)
then
begin
n := 0;
repeat
read(scratch,ch);
until (ch=':') or (eof(scratch));
while (not eoln(scratch)) do
begin

read(scratch,ch);
n := n+l;
strln) := ch;
end;
if n+l<=LineLn
then
for i:=n+l to LineLn do
strli) := ' ';
end
end; (* of ScratchInStr *)

function ScratHoldsItens : boolean;

(* to inspect the SCRATCH FILE and check that ITENS are complete *)

var count,Linelio : integer;
FzultFound,HeadingError,lleqfound : boolear;
procecdure CheckLine;
var CharCount : integer;
LineTooLong,BadLine : boolean;
begin
Linelo := Linello + 1;
CharCount := 1;
DadLine := false;
LineTooLong := false;
cet(scratch);
while (not coln(scratch)) and (CharCount < LineLn + ¢ ) do
begin
get(scratch);
CharCount := CharCount + 1;
if (CharCount = 9) and (scratch™ <> ':') then
BadLine := true;
end;
if CharCount < 9 then BadLine := true
vhile not coln(scratch) do
begin
get{scratch);
if scratch™ <> ' ' then LineToolLong := true
end;
if BadLine then
begin
FaultFound := true;
writeln('Line',Linello : 4,' bad line '':'' missing.')
end;
if LineTooLong then
begin
FaultFound := true;
writeln('Line',LineNo : 4,' overflow.')
end
end; (* of CheckLine *)
tegin
Linello := 0;
HeadingError := false;
FaultFound := false;
tlegFound := false;
writeln;
writeln('SCRATCH FILE CHECK in progress.');

H

writeln;
while not eof(scratch) and not HeadingError do
begin
repeat
get(scratch);
if not eof(scratch) then
if eoln(scratch) then LineNo := LineNo + 1
until (eof(scratch)) or (scratch® = '-');
if scratch®™ = '-' then legFound := true;
LinelNo := LineNo + 1;
if eof(scratch) then

6

begin
if not NegFound then (* no ITEMS present *)
begin
HeadingError := true;
writeln('SCRATCH does not contain ITELS."')
end
end
else
begin
while not eoln(scratch) do get(scratch);
for count := 1 to 5 do CheckLine;
Linelio := Linelo + 1;
get(scratch);
while (not eoln(scratch)) and
not (scratch™ in ['1'..'9')) do get(scratch);
while (not eoln{scratch)) and
not (scratch®™ = ' ') co get(scratch);
while (not eoln(scratch)) and
not (scratch®™ in ['1'..'9'])) do get(scratch);
if eoln(scratch) then
begin (* twe numbers not present *)
FaultFound := true;
writeln('Line',Linellio : 4,
' two integers not found,')
end
else
while not eoln(scratch) co get(scratch);
for count := 1 to 2 do CheckLine;
end
ena;
if FaultFound then
begin
writeln;
writeln('Errors in SCRATCH use editor to correct,
then try again.');
writeln;
ScrathioldsItens := false
end
else if not HeadingError then ScratHoldslItems := true
reset(scratch)
end; (* of ScratloldsItens *)

procedure empt; (* to empty an ITEM *)
var NoChar : string;
a : integer;
ch : char;
begin
MoChar (1]}
NoChar (2]
NoChar{3]
for a:=4 to LinelLn do
NoChar(al := '.';
with empty do

.~ . e

begin
authors := NoChar;
titlel := NoChar;
title2 := HoChar;
placel := RoChar;
place2 := NoChar;
date NonDate;
keyl NoChar;
key2 := lNoChar
end;
for a:=2 to 9 do
begin
case a of
2: ch
3: ch ;
4: ch := 'm';
5: ch := 'p':
6: ch = 't';
7: ch = 'y';
8: ch := ' '
9: ¢ch = " !

end; (* of case *)
empty.authors{a) := ch
enc
end; (* of enpt *)

procedure OutRecord{entry : item; n : integer);
(* to write to the terminal *)
var a : integer;

begin
for a:=1 to 7 do
vrite('-—~mvemmo 1');
writeln;
with entry do
begin

writeln(authors);
writeln(titlel);
writeln(title2);

Applications



writeln(placel);
writeln(place2);
writeln(date:8,"
writeln(keyl);
writeln(key2)
end
end; (* of OutRecord *)

Item number :',n :5);

procedure GetReference(n : integer);
(* to count through bank to find an ITEM *)
begin
if n<count
then
begin
reset(bank) ;
count := 1
end; '
while (count < n) and (not eof (bank)) do
begin
count := count+l;
get (bank)
end;
if eof(bank)
then
begin
writeln;

writeln(' You have only got',count -1,' Itens.'};

writeln;
goto 10
end
else
OutRecord(bank”,n)
end; (* of GetReference *)

procedure change(var entry : item; m : integer);
(* to change the mth, ITEM *)
var line : integer;
DlOption,LineOption : char;
str : string;
begin
writeln;
writeln;
repeat
vwrite{('Do you wish to DELETE or MNODIFY .... ) ;
InlChar (DlOption)
until DHOption in ['D','d',°'H','m'};
it Dhoption in ('D','d')
then
begin
enpt ;
entry := enmpty
end
else
begin
writeln;
writeln('You may REPLACE a line,');
writeln('move to the NEXT line,'):
writeln('or SKIP to the end of the iten. ');
writeln;
line := 0;
repeat
line := line+l;

with entry do
case line of

l: str := authors;
2: str := titlel;
3: str := title2;
4: str := placel;
5: str := place2;
6: ;
7: str := keyl;
8: str := key2
end; (* of case ¥)
if line<>6
then
begin
writeln;

writeln(str);
writeln(output);
repeat

write('REPLACE, NEXT line or SKIP to end «... ');

InlChar(LineOption)
until LineOption in ['R','r’,'n','n',*'s','s');

writeln;
if LineOption in ['R','r')
then
begin
writeln('Type replacenent line :'};
writeln;

VDUinString(str);
with entry do

Applications

case line of
1: authors

2: titlel
3: title2
4: placel
5: place2
7: keyl :=
8: key2 :=
end; (* of
end
end
else
begin
writeln('Date ',entry.date :4);
writeln;
repeat

write ('"REPLACE, NEXT line or SKIP to end .... ');
InlChar(LineOption)
until LineOption in ['R','r','N','n','s','s');
if LineOption in ['R','r"]
then
begin
vriteln('Type replacement date ');
write(': ');

InlInt(entry.date)
end;
end
until ((line=8) or (LineOption in ['S','s']));
end;

writeln;

writeln('Modified item reads : i

writeln;

OutRecord(entry,m);

writeln;

end; (* of change *)

begin (* HAIN PROGRAM *)
count := HiTag;
n o= 1;
reset(PendingTray) ;
rewrite(TempPendingTray) ;
while not eof (PendingTray) do
begin (* copy down existing contents of file
'‘PendingTray' *)
TempPendingTray”™ := PendingTray”;
put (TempPendingTray) ;
get(PendingTray)
end;
rewrite(PendingTray);
reset (TempPendingTray) ;
while not eof (TermpPendingTray) co
begin (* copy back 'PendingTray' and count contents *)
PendingTray” := TempPendingTray”;
put (PendingTray) ;
get(TempPendingTray):
no:= n+l
end;
rewrite (TempPendingTray) ;

repeat
writeln;
repeat
write('Do you wish to APPEND, to CHANGE,
writeln(“to use the SPECIAL facility, ');
write('or to FINISH .... ');
InlChar(lainOption)

until lainOption in ('A*','a','C','c','s','s','F','£');

"

(* MainOption= S is a special facility,
used for loading from ‘'scratch' to 'PendingTray' *)

case lainOption of
A, 'at: (* TO APPEND *)
begin
vriteln;
repeat
write('Do you need help
[YES or KOl .... ');
InlChar(HelpOption)
until HelpOption in ('Y','y','N','n']};
if HelpOption in ['Y','y']
then
begin

writeln;
writeln('NOTES."');
write('(a) Authors and keywords separated');
writeln(' by a comma ",".');
write('(b) To remove the automatic conversion to ');
writeln('upper case letters');
write(' begin a line of text with');
writeln(' a backslash "\".');



write('(c) Date must be a single integer number'); writeln(
writeln(' eg. 1980.');

write('(d) If addresses are to be entered use the two');

writeln(' title lines;');

write('® close pack but indicate new'):

writeln(' lines with a backslash "\".');

write('(e) A personal local storage reference');

writeln(' may be kept on the 2nd. location line'};

'If an ITEN is changed more than once only the last
version survives.'
end;
repeat
10: writeln;
chge := false;
writeln('Type 0 if no ITEM needs changing, otherwise

type');
write(® but should be enclosed in square brackets;'); write('the ITEN number... *);
writeln(' for example: [Bl1360].') InlInt(nn);
end; if nn<0
repeat then
writeln; begin
writeln('llew item:~- '); writeln;
writeln; writeln('No negative numbered ITEHMS')
for a:=1 to 7 do end;
write{'====e=-m= I'); if nn > 0
writeln; then
with entry do begin
begin vriteln;
writeln{ 'Line of author names, or rame of addressee :' ); GetReference(nn);
VDUinString (authors) ; if not eof (bank)
writelrn('First line of title or address :'); then
VDUinString(titlel); begin
writeln('Second line of title or address :'); entry := bank”;
VDUinString(title2); repeat
writeln('First line of reference location :'); writeln;
vDUinString(placel) ; repeat
writeln('Second line of reference location :'); write('Do you wish to change this item [YES or NO} .... ");
vDhUinString(gplace2) ; InlChar (ChangeOption)
writeln('Date ~ just the year - ') until ChangeOption in ['Y','y','l','n'];
InlInt{cate); if ChangeOption in ['Y','y']
writeln('First line of keywords :'); then
vDhUinString(keyl) ; begin
writeln('Second line of keywords :'); change{entry,nn) ;
vbUinString(key2); chge := true
end; ond
wvriteln; until ChangeOption in ['K','n'};
OutRecord(entry,n}; TagEntry.tag := nn;
repeat TagEntry.entry := entry;
writeln; if chge
repeat then
write( 'Do you wish to make a change {YES or O] .... ') begin
InlChar (ChangeOption) PendingTray” := TagEntry;
until ChangeOption in {'¥Y','y','E','n']; put (PendingTray) ;
if ChangeOption in ['Y','y'] no:= n+l
then end
change (entry,n) end
until ChangeOption in ['N','n']; ) ena;
if entry.date <> NonDate writeln;
then until nn = 0
begin end; (* of Change option *)
TagECntry.tag := HiTag; . . .
TagEntry.entry := entry; 'SY,'st: (*.To nove from text file 'scratch' to 'PendingTray' *)
PendingTray” := TagEntry; begin
put (PendingTray) ; wr}teln; )
n iz n+l write('This optiocn moves the contents of the ');
end writeln('SCRATCH file into the PENDING tray.');
else write('It can be used to copy selected ITEHS from one');
begin writeln(' bibliography to another.');
writeln; write('OR, it can be used to reinstate ITENS ');
writeln('Iten withdrawn.'); writeln('which have been changed by the editor.');
writeln writeln;
end; repe;t
writeln; writeln;
repeat write('Do you wish these items to be APPENDED, REINSTATED or
write( 'Do you wish to appenc nmore items [YES or KROJ .... ' ); NO ACTION .... ')
InlChar (AppendOption) InlChar(SpecialOption)

until AppendOption in ['Y','y','U','n'];
until AppendOption in ['l','n’]
end; (* of Append option *)

until SpecialOption in ['A','a','N','n','R','r'];
if SpecialOption in {'A','a’,'R','r"']

then
begin
'Ccl,'c': (* TO CHANGE *) reset(scratch) ;
beging; writeln;
writeln; (* now check that scratch holds ITEMS in
repeat

the correct form *)

vrite('Do you need help [YES or 0] ... '); if (not eof(scratch)) and

InlChar (HelpOpticn)

ScratHoldsItems
until HelpOption in ['Y','y','l','n']; then
if llelpoption in ['Y','y’] begin
then while not eof(scratch) do
begin begin
writeln; with entry do
writeln( 'You !UST know the ITEN NUNBERS of the ITELS you wish to begin

change.' );

ScratchInStr(authors);
writeln( 'If you do not, leave this program and run "bibout” to

ScratchInStr(titlel);
tinc them.' J; ScratchInStr(title2);
writeln( 'Changes do not take placc imnmediately, they stay in the ScratchInStr(placel) ;

PELDINLG' };

ScratchInStr(place2);
writeln('tray until the "update" program is run.');

read(scratch,date) ;

8 Applications



repeat

read(scratch,ch)

until ¢ch =

readln(scratch,TagEntry.tag);

writeln(n,' Dated ',date,' Item number ',TagEntry.taq);

ScratchInStr(keyl);
ScratchInStr(key2);

end;

if SpecialOption in ['A','a'] then

TagEntry.tag := HiTag;
TagEntry.entry := entry;
PendingTray” := TagEntry;

put (PendingTray) ;

n := n+l;

if not eof(scratch)

then

get(scratch)

end;

rewrite(scratch)

end
end
end; (* of Special option *)

'‘F','f': begin
writeln;

writeln('Number of ITEMS now in Pending

Tray =',n-1 :5);
writeln
end
end (* of case "MainOption" *)

until MainOption in ['F','f']

end.

(* end of program Bibin.p *)

program Bibout (input,output,bank,dict,scratch,dlist,PendingTray);

(* To call down items from the bibliography *)
written by Tony Heyes, Blind Hobility Research Unit,

(t
Depa

rtment of Psychology, The University,

Nottingham, U.K.. *)

lap~

co

type

var

T 10;

Lineln = 70;
RowLn = 20;
HiTag = 10000;
LinesPerPage = 64

i
VDULinesPerPage 24;

string = packed array (l..LineLn) of char;

item = record
authors,titlel,title2,
placel,place2 : string;

date : integer;
keyl ,key2 : string
end;

word = packed array [1..20] of char;
row = array [l..Rowbn)] of integer;
dic = record

name : word;
nunbers : row;
cont : boolean
end;
link = "DicLine;
DicLine = record
val : integer;
next : link
end;

FileAssigned : boolean;
bank,PendingTray : file of iten;

Glist,AddressFile,scratch : text;
dict : file of dic;
FirstLink,SecondLink,ThirdLink,ptl,here

low,high,n,lumSoFar,

Linetlo,AddLinello,count,Toplten,ifronDict, Numi!
device,FileStyle,llainOpt,!!DOption,Logichction

procedure InlChar (var ch : char);

(* to read the first character of a worc typed into

begin

2 := input”®;
ile not (ch in ['A'..'2','a’'..'2']) do
begin

integer;
char;

the terminal *)

(* gkips along until first character found *)

get(input);
if eoln(input)
then
begin

Applications

writeln;
write('ERROR: character required .... ')
end;
ch := input”
end;
vhile not eoln(input) do (* skips over rest of line ¥}
get(input)
endg; (* of InlChar *)

procedure Inlint (var £ : text; var int : integer);
(* to read an integer and not cause a fatal error if a character
is given *}

var ch : char;
a,OrdZero : integer;
ilegFound : boolean;
Legin
repeat (* skips along until integer is found *)
get(f);
if eoln(f)
then
begin
writeln;
write('ERROR: digit required .... ')
end;
ch := £°
urntil ch in ['=','+','0'..'9'};
if ch='~!
then
begin
llegFound := truc;
get(f);
ch = £°
end
clse
begin
liegyFound := false;
if ch='+"'
then
begin
get(f);
ch := £°
end
enaG;
a := 0;
OrcZero := ord('0');
repeat
a := 10*a+ord(ch)-OrdZero;
get(£f);
ch := £
until not (ch in ('0'..'9"));
while not eoln(f) do (* skips over rest of line *)
get(f);
if MegFound
then
int := -a
else
int := a
end; (* of InlInt *)

procedure SkipToEndOfPage(PageLines : integer;
var where : text);
begin
while LineNo < PageLines do

begin
writeln(where);
Linello := Linelio+l
end;
LineNo := 0
end; (* of SkipToEndOfPage *)

procedure GetRef(n : integer; destination : char);
var a,CharCount,LineInQuestion,NOfComnas,liordLength : integer;
line : string;
DoubleSpace,InBrackets,KeepllextCap,
something,KeepAllCaps,woops : boolean;
ch,LastCh : char;
begin
if n<count
then
begin
reset(tank);
count :=1
endl;
while (count < n) and (not eof (bank)}) do
begin
count := count+l;
get (bank)
end;
if eof (bank)



then

begin
writeln;
writeln(' You have only got',count ~1,' Items.'};
vriteln;
goto 10
end
else
with bank” do
begin
case destination of
'T','t': (* Output to terminal *)
begin
if (VDULinesPerPage-LineNo < 9)
then

SkipToEndOfPage (VDULinesPerPage,output) ;
for a:=1 to 7 do

writeln;
writeln(authors);
writeln(titlel);
writeln(title2);
writeln(placel);
writeln(place2);
writeln(date:8,'
writeln(keyl);
vriteln(key2);
LineNo := Linelo + 9
end; (* of 'T' *)
'I','i': (* Output to scratch file *)
begin
if LinesPerPage-Linelo < 9
then
SkipToEndOfPage(LinesPerPage,scratch);
for a:=l to 7 do

Iten number :',n :5);

write(scratch,'--=~=---- I');
wvriteln(scratch,'=-~=cc-w-= ')

writeln(scratch, 'hames ¢! ,authors);
writeln(scratch,'Details :',titlel);
writeln(scratch,’ :',title2);
writeln(scratch,' :',placel);
writeln{scratch,' :',place2);
writeln{scratch,date:14,"' Iten number:',n :5);
writeln({scratch, 'Keywords:' ,keyl);
writeln{scratch,’ s, key2);

Linelo := Lineblo + 9

end; (* of 'I' *)

'E','e': (* Output to scratch file in envelope label format.
Only for addresses. *)

begin
wvriteln(AddressFile);
AddLinello := AddLineNo +1;
woops := true;
for LineInQuestion:=1 to 2 do

begin
DoubleSpace := false;
LastCh := ':'; (* initail value *)

CharCount := 0;
writeln(AddressFile);
AddLinello := AddLineNo +1;
write{(AddressFile," ');
if LineInQuestion=1
then
line := titlel
else
line := title2;
while (CharCount<LineLn) and not DoubleSpace do
begin
CharCount := CharCount+l;
¢h := linelCharCount];
if ch='\"
then
begin
woops := false;
writeln(AddressFile);
AddLineNo := AddLineNo +1;
write(AddressFile,’ "
end
else
vwrite(AddressFile,ch);
DoubleSpace := (ch=' ') and (LastCh=' ');
LastCh := ch
end
end;
vhile (AddLineMNo mod 8) <> 0 do
begin
writeln(AddressFile);
AddLineNo := AddLineNo + 1
end;
if woops
then
begin

10

writeln;
writeln;
write('An attempt to output a reference');
writeln(' in address format.');
writeln;
writeln;
write( 'Addresses must be close-packed on the two' );
writeln(' title lines.');
writeln( 'Use the backslash "\" as line separator.' );
writeln;
rewrite(scratch);
FileAssigned := false;
goto 10
end
end; (* of 'E' *)
'R','r': (* Output in format for wordprocessor NROFF *)
begin (* firstly the author line *)
writeln(scratch,'.nr');
(* this is an NROFF macro *)
write(scratch,'\:');
(* bold lettering command *)
DoubleSpace := false;
KeepAllCaps := false;
woops := false;
LastCh := ':';
CharCount := 0;
NOfCommas := 0;
if authors[ll='\"
then
begin
KeepAllCaps := true;
CharCount := CharCount+l
end;
while (CharCount<LineLn)
and not DoubleSpace do

(* initial value *)

begin
CharCount := CharCount+l;
ch := authors(CharCountl;
if ch=',?
then
NOfCommas := NOfCommas+l;
DoubleSpace := (ch=' ') and (LastCh=' *);
LastCh := ch
end;
DoubleSpace := false;
LastCh = ':';
CharCount := 0;
while (CharCount<LineLn) and not DoubleSpace do
begin
CharCount := CharCount+l;
ch := authorsiCharCountl;
if (ch in ['A'..'Z']) and (LastCh in ['A'..'2'])
and not KeepAllCaps
then
write(scratch,chr((ord(ch)+32)))}
else
if ch=',"
then
begin
if NOfCommas=1
then
write(scratch,' & ')
else
write(scratch,', ');
NOfCommas := NOfCommas~-l
end
else
write(scratch,ch);
DoubleSpace := (ch=' ') and (LastCh=' ');
LastCh := ch
end;
writeln(scratch,'(',date : 4,')\:");
for LineInQuestion :=1 to 4 do
begin (* title and place lines *)
KeepNextCap := true;
KeepAllCaps := false;
case LineInQuestion of
l: line := titlel;
2: begin
line := title2;
KeepNextCap := false
end;
3: line := placel:;
4: begin
line := place2;
CharCount := 0;
InBrackets := false;
repeat
CharCount := CharCount+l;
if linelCharCountl="["
then

Applications



InBrackets := true;
if InBrackets
then
if linelCharCountl="1"
then
begin
line(CharCount] := ' *;
InBrackets := false
end;
if InBrackets
then
linelCharCount] := ' '
until CharCount=LineLn
end
end; (* of case LineInQuestion *)
CharCount := Lineln;
repeat
CharCount := CharCount-1
until (CharCount=1l) or (lineiCharCount}<>' '};

if CharCount<LineLn
then

line[CharCount+l] := '!'; (* a silly character *
(* placed at the end of the character stirng *)

WordLength := 0;
if CharCount>l
then
repeat
CharCount := CharCount-1;
if linel{CharCount]<>' °*
then
begin
if linelCharCount] in ['A'..'Z2"']
then
lordLength := WordLength+l
end
else
begin
if not (WordLength in (2,3])
then
linelCharCount] := '~';
(* another silly char fills up spaces
before words which keep caps. *)
WordLength := 0
end
until CharCount=1;
CharCount := 0;
something := false;
if linelll='\"
then
begin
KeepAllCaps := true;
CharCount := CharCount+l
end;
ch := ':'; (* initial value *)
while (CharCount < LineLn) and
(linelCharCount+l] <> '1') do
begin
CharCount := CharCount+l;
LastCh := ch;
ch := linelCharCount];
if not ((LastCh in (*'~',' '1) and
(ch in ('',' ']))
then
begin

if (ch in ['A'..'2']) and not KeepllextCap

then
ch := chr({ord(ch)+32));
if ch in {'A',,'2']
then
KeepllextCap := false;
if ch='\!
then
woops := truc; (* its an address ¥*)
if ch='""
then
begin
ch := " ';
if (LineInQuestion in {3,4))
then
KeepllextCap := true
end;
if (ch in [*1'..'9'})
then
KeepllextCap := false;
if (ch<>' ") and (ch<>'i")
then
something := true;
if something
then
write(scratch,ch)
end

Applications

end;
if something
then
writeln(scratch)

end;

if woops

then
begin
writeln;
writeln;
write('An attempt to output addresses in');
writeln(' reference format.');
writeln;
writeln;
rewrite(AddressFile);
FileAssigned := false;

goto 10
end
end (* of 'R' %)

end (* of case deitination ¥)

end

end; (* of GetRef *)

procedure ReWind(var ptr : link);

var p,q,pt : link;

begin
P := ptr;
pt := nil;
while p<>nil do
begin
nevw(qg);
g*.val := p~.val;
q".next := pt;
Pt = ¢;
p := p~.next
end;
ptr := pt

end; (* of ReWlind *)
procedure GetDict(m : integer; var ptr : link);

var a : integer;
p : link;
OldEntry : dic;
nore : boolean;
begin
if m < HiTag
then
begin
reset(dict);
a = 1;
while ad<m do
begin
OldEntry := dict”;
det(dict);
if OldEntry.cont=false
then
a := a+l
end;
writeln;
vriteln(dict”.name);
ptr := nil;
repeat
for a:=1 to RowLn do
if dict”.numbers{al<>0
then
begin
new(p);
p~.val := dict”.numberslal;
p~.next := ptr;
ptr :=p
end;
more := dict”,cont;
get{dict);
until not more;
ReWind(ptr)
end
else
begin
ptr := nil;
for a:=TopItem downto 1 do

begin
new(p);
P .val := a;
P .next := ptr;
ptr :=p
end

end
cnd;  (* of GetDict *)

11



procedure join(var pl :link; p2 : link; which : char);

var continue : boolean;
q.q9p.ptl,pt2,pt3 : link;
begin
ptl := pl;
rt2 := p2;

continue := (ptl<>nil) and (pt2<>nil);
¢p := nil;
case which of

‘A','a’: (* AND *)
begin
while continue do
begin
if ptl®,vald>pt2”.val
then
begin
pt3 := ptl;
ptl := pt2;
pt2 := pt3
end;
if pt2®.vald>ptl”.val
then
begin
ptl := ptl”.next;
continue := ptl<>nil
end
else
if ptl®.val=pt2~.val
then
begin
new(q);
q".val := ptl”.,val;
q".next := gp;
qp = q;
ptl := ptl”.next;
pt2 := pt2”.next;
continue := (ptl<>nil) and
(pt2<>nil)
end
end
end; (* of AND ¥*)
'0','0': (* OR *)
begin
begin
while continue do
begin
if ptl®.val>pt2”.val
then
begin
pt3 := ptl;
ptl := pt2;
pt2 := pt3
end;
if ptl®.val<pt2”.val
then
begin
new(q) ;
q~.val := ptl®.val;
g”.next := gp;
gp := q;
ptl := ptl”.next;
continue := ptl<>nil
end
else
if ptl®.val=pt2”~.val
then
begin
new(q);
q".val := ptl”,.val;
g~.next := gp;
qp := q;
ptl := ptl”®.next;:
pt2 := pt2”.next;
continue := (ptl<>nil) and
(pt2<>nil)
end
end;
if ptl=nil
then
ptl := pt2;
while ptl<>nil do
begin
new(q) ;
g~.val := ptl-.val;
q”.next := gp;
ap = q;
ptl := ptl”.next
end
end
end; (* of OR *)
12

lNl,Inl:
begin
while continue do
begin
if ptl*.val>pt2”,val
then
begin
pt2 := pt2°.next;
continue := pt2<>nil
end
else
if ptl®.val<pt2”.val
then
begin
new(q) ;
g~.val := ptl”.val;
q" .next := ¢p;
gp := q;
ptl := ptl-.next;
continue := ptl<>nil
end
else
if ptl®.val=pt2”.val
then
begin
ptl := ptl”.next;
pt2 := pt2°.next;
continue := (ptl<>nil) and

(* NOT *)

(pt2¢<>nil)

end
end;
while ptl<>nil do
begin
new(q);

q".val 3= ptl
g”.next := gp;
qp = q;
ptl := ptl”.next
end
end (* of NOT *)

end; (* of case *)

ReVlind(qp) ;

Pl := gp

end; (* of join *)

.val;

procedure QutList(ptr : link; var aa : integer);

var p : link;:
begin
p := ptr;
aa := 0;
writeln;
while p<>nil do
begin
aa := aa+l;
if aa mod 13 = 0
then
writeln(p”.val :5)
else
vrite(p~.val :5);
p := p~.next
end;
writeln;
writeln
end; (* of OutList *)

procedure DictList(var where : text);
(* TO LIST DICTIONARY *)

const NoOfLines = 64;
WordsPerLine = 4; (* Change constants to suit page size *)

(* Sce also line 700 *)
type list = arrayll..384] of word;

var num,i : integer;
OldEntry : dic;
UordList : list;
begin
reset(dict);
rewrite(dlist);
i := 0;
while not eof({dict) ao
begin
for num:=1 to NoOfLines*WordsPerLine do
begin
OldEntry := dict”;
while (dict”.cont=true)and(not eof(dict)) do
get{dict);
if not eof(dict)
then

Applications



begin
WordList(num]
get(dict)
end
else
VordList[numl := * 'y

:= 0ldEntry.namé;

end;
for num:=1 to lloOfLines do
writeln(where,WordList[num] ,WordList[NoOfLines+nunl,
WordList[2*NoOfLines+numl,
WordList[3*NoOfLines+numl) ;
(* Extent this list for more words per line *)
i := i+NoOfLines*WordsPerLine
end;
writeln;
write('Dictionary written to file.');
writeln(' To obtain a hard copy run "outdict".');
(* 'outdict' simply prints out the file 'dlist'. *)
writeln
end; (* of DictList *)
procedure TwoCols (var F,G : text);
const rows = 8;
TwiceRows = 16;
cols = 40;

ChLink = “chstack;
chstack = record
ch : char;
next : ChLink
cnd;
arrayll..TwiceRows] of ChLink;

type

lines =
var pt.here : ChLink;
lin,StartLin : lines;
LineNo,Charllo : integer;
ch : char;

procedure reverse(var ptr : ChLink);

var p,q,pt : ChLink;
vegin
p = ptr;
pt := nil;
while p <>
begin
nev(q);
G~ .ch := p~.ch;
g”.next := pt;
Pt := q;
p := p~.next
end;
1= pt
(* of reverse *)

nil do

ptr
end;

tegin
reset(F);
if not eof (F)
then
begin
page(G) ;
writeln;
writeln('Output in two column '‘Xerox'' label format.');
writeln
end;
while not eof(F) do
begin
nark (here) ;
for LineNo
begin
StartLin(LineNol := nil;
if not eof(F) then
while not eoln(F) do
begin
read(F,ch) ;
nev(lin(LineNol);
linlLineNo}".ch := ch;
lin[LineNol".next := StartLinl(Linello];
StartLin{Linelio] := lin{Linello)
end;
if not eof(F)
then
readln(F);
reverse(StartLin[Linello});
end;

:= 1 to 2*rows do

for Linello
begin
Charlio := 0;
pt := StartLinlLineNol;

:= 1 to rows do

Applications

while (pt <> nil) and (Charlio < cols) do
begin
write(G,pt”.ch);
pt := pt”.next;
CharlNo := CharKo + 1
end;
pt := StartLin{LineNo + rowsl;
if pt <> nil
then
while CharNo < cols do
begin
write(G,'
Charllo :=
end;
wvhile pt <> nil ao
begin
ch := pt~.ch;
write(G,ch);
pt := pt”.next
end;
writeln(G)
end;
release{here);
end
(* of TwoCols *)

vy ;

CharNo +1

end;
procedure GetFromDict(var FirstWord,NumWords :

var
ch,action,option : char;
n,ChCount,PointerNum,NunberFound :
name,signame : word;
AllCaps : boolean;
begin
vriteln;
AllCaps := true;
ChCount := 0;
write('Enter word required or (.}
repeat
read(ch)
until ch<>' ';
if ch='\"
then
begin
AllCaps := false;
read(ch)
end;
if ch='.?
then
begin (* "action" *)
while not eoln{input) do
getlinput);
repecat
writeln;
writeln( 'Do you wish to LOOK UP the selected string,
to RESTART the' );
write('selection or to QUIT the dictionary
InlChar(action}

integer;

') ;

until action in ['L','1','R','r','0Q','q")
end
else
begin (* word *)

action :=
repeat
ChCount := ChCount + 1;
if ChCount > 1
then
read(ch);
if AllCaps and (ch in ('a'..
then
name [ChCount]
else
name {ChCount] := ch
until eoln(input) or (ChCount =
if not coln{input)

Wy

'z'])

:= chr{ord{(ch)=32)

20);

then
readln;
for n:=ChCount+l to 20 do
nameln] := * !
end;
if action in ('L','1']
then
FirstWord := -1 (* look up *)
else
if action in ['R','r'}
then
FirstWord := -2 (* restart *)
else
if action in {'Q','q'}
then
FirstWord := 0 (* quit *)
else

integer);

13



if name='#x*
(* special word *)

then
begin
writeln;
writeln('**% ALL ITENS #*%*');
writeln;
repeat
write('Is this correct [YES or NOJ
InlChar(option)
until option in ['Y','y','N','n'];
if option in {'Y','y")
then
FirstWord := HiTag
else
GetFromDict(FirstWord, NumWords)
end
else
begin (* a real word *)

reset(dict);

NumberFound := 0;

PointerMum := 0;

writeln;

signame := ' ‘s

while (name >= signane) and hot eof(dict) do

begin
if name=signane
then
begin
writeln(dict”.nane);
NumberFound := NumberFound+l
end;
while (dict”.cont=true) do
get(dict);

if (PointerNum > 0) and not ecof(dict)

then
get(dict);
PointerNum := PointerNum+l;
for n:=1 to ChCount do
signamel(n] := dict”.namelnl;
for n:=ChCount+l to 20 do
signamel(n)
end;
writeln;
if NumberFound=0
then
begin

i LI
= V

writeln( 'Word not found in your dictionary; try again.' );

begin
Toplten := 0;

writeln('Counting, please wait.');

writeln;
writeln;
while not eof(bank) do
begin
Topltenm := Topltem +1;
get(bank)
end;
rewrite(dlist);
writeln(dlist,'”',TopIten :
writeln(dlist);
writeln{(dlist);

writeln(dlist,‘Your DICTIONARY must first

writeln(dlist,' the HARD COPY option
writeln(dlist);
writeln(dlist)
end;

writeln('The BIBLIOGRAPHY currently holds ',Topiten,'

repeat
writeln;
10: repeat

InlChar(lainOpt)

5);

of ''bibout''.');

ITEMS.');

writeln( 'Do you wish to obtain a HARD COPY of the current dictionary,'
write('to SEARCH for items or to FINISH ....

') ;

until HainOpt in ['H','h','S',’'s','F','f'];

writeln;
if Kainopt in ['H','h']
then
begin
DictList(dlist);
HainOpt := 'F'
end;
if nNainOpt in ('S','s']
then
begin
repeat
viriteln;
writeln('Do you wish to
write('or by use of the
InlChar (DOption)

search by item NUMBER');
DICTIONARY .... 'Y;

until HWDOption in ['N','n','D','d');

writeln;
repeat
writeln;

vrite('Output to TERNINAL or to scratch FILE ....

be compiled by running');

) ;

writeln; InlChar(device)
’ T ? . .
GetFromDict (FirstWord, Numilords) until device in ['T','t','F','£','S","'s"'];
end writeln;
else if cdevice in ['T','t']
begin then
repeat FileStyle := 'T';
if NumberFound = 1 if (device in ('F','£','S','s']) and not FileAssigned
then then
write( 'Is this word correct [YES or NOJ .... ') repeat
else vwriteln('Is the desired output');
write( 'Are ALL these wordc required [YES or NOl .... ' ); write('an ITEK list,');
InlChar(option) writeln(® ‘‘'the full item being given'' '});

until option in ['¥','y','N','n']; write('a REFERENCE list,');

if option in ['Y’,'y'} writeln(' ‘''only the reference part being given'' |
then write{('or an address list suitable');
begin write(' for ENVELOPE addressing .... ');
FirstWord := Pointerkum - InlChar(FileStyle);
KumberFound; FileAssigned := true
Humilords := llumberFound until FileStyle in ('I','i','R','c','E’,'e"');
end if FileStyle in ['R','r')
elsc then
GetFromDict (FirstWord, Nunliords) begin
end writeln(scratch,'.hy 0'); (* NROFF commands *)
end writeln(scratch,'.na');
end; (* of GetFromDict *) writeln(scratch,'.sp 2');
writeln(scratch,'.de nr');
begin (* NAIN PROGRAM *) writeln(scratch,'.sp');
rewrite(scratch); writeln(scratch,'.ne 6');
revrite(AddressFile); writeln(scratch,'.ti -5');
reset (bank) ; writeln(scratch,’'..');
count := HiTag; writeln(scratch,'.ne 10");
LineNo := 0; writeln{scratch,'\:References.\:');
AddLineNo := 0; writeln(scratch,'.sp 2');
FileAssigned := false; writeln(scratch,'.in +5')
writeln; end; .
writeln(’'To retrieve ITEMS from the BIBLIOGRAPHY.'); writeln;
(* TO SEARCH BY AUTHORS ancd KEYWORDS *) case lIDOption of
writeln; 'D','d' : begin
reset(dlist); writeln('Vords are looked up in ');
if dlist” = '~ writeln('the dictionary and a list of reference numbers' );
then writeln{ 'containing the given word is shown on the terminal.' );
InlInt(dlist,TopIten) vriteln;
else write( 'The special "word®, [***) yill match with all the words'
14

Applications



writeln(' in the dictionary.');
writeln;
write('Logical combination of ');
writeln( 'author and keywords continue until you wish' );
W “In('to terminated the search.');
v In;
wr_.eln(
stop [.1.' );
writeln;
repeat
writeln;
writeln('New sequence.');
writeln;
liumSoFar := 0;
mark (here) ;
GetFromDict (KFromDict ,Nunll) ;
if NFromDict > 0 (* a real word
then
begin
GetDict (KFromDict,FirstLink) ;
if Numi? > 1
then
repeat
NFromDict

:= NFromDict + 1;

'T6 terminate a search ansver the prompt with a full

*)

GetDict (NFromDict,SecondLink) ;

join(FirstLink,SecondLink,'0');

NumW := NumWl - 1

until Num¥l = 1;
OutList(FirstLink,NumSoFar) ;
while NFromDict > 0 do
begin

GetFromDict (NFromDict,Num¥) ;
if NFrombict > 0 (* a real word *)

then
begin

GetDict (NFromDict,SecondLink} ;

if NumW > 1
then
repeat

MFromDict := NFromDict + 1;

GetDict (liFromPict,ThirdLink) ;
join(SecondLink,ThirdLink,'0');

Numl/ := Numil - 1
until Numiyy = 1;

OutList(SecondLink,NumSoFar) ;

repeat
'AND, OR or NOT .evse ? ')
InlChar(LogicAction)

write(

until LogicAction in ('A','a','0',

lol' 'N','n'];
join(FirstLink,SecondLink,
LogicAction);
OutList(FirstLink,HumSoFar)
end
end;

if ((lumSoFar > 0) and (NFromDict =

then
begin
writeln;
writeln{'Search in progress for',NumSoFar :8, '
writeln;
ptl := FirstLink;
while ptl<>nil do
begin

(* look up *)

Itens');

Getllef (ptl”.val,FileStyle);

ptl

end;

if FileStyle in ['I','i','R'
IEI’Iell

:= ptl®.next

then
begin
writeln;
'ITCHS written to SCRATCH FILE.' );
writeln
cnd;
release(here)
end;
end
until NFromDict=0
end;
begin

writeln(

(* quit *)

"', 'n' (* TO SEARCH BY NUMBER *)
writeln;
writeln('ITENS may be called by number.');

w ~1ln('A whole block of ITENS may be called;');

\ ('to do this answer this prompt with');

Wwi_.eln(' minus one [-1].%);

writeln;

writeln( 'To quit: answer prompt with a zero [0]. ' );
repeat
writeln;

write ('Number of ITEN to be referenced..... ' );
Applications

AR

InlInt(input,n);
writeln;
ifn=-1
then
begin
writeln;
writeln{'To output a block of
ITENS.') ;

'Give the LOW ITE!N number ,then the HIGH number.'
write('LOW number
InlInt{input,low);
write('HIGH number .... ');
InlInt(input,high);
if (low=0) or (high=0)

then
begin
low
high :
n :=20
end;
if low <= high
then
tegin
writeln;
writeln{('Search in progress'};
writeln;
for n:=low to high do
GetRef (n,FileStyle)
end
end
else
ifn>0
then
beqgin
writeln;
writeln('Search in progress.');
writeln;
GetRef(n,FileStyle)
end
until n=0
end
(* of case lIDOption *)

writeln(

P

(* an escape *)
= 1;
= 0;

end
end

until MainOpt in ['F','f'];
if FileStyle in ['R','r")

13

then
begin
writeln(scratch,'.in =-5');
writeln;
writeln( 'The output file ''scratch'' contains the references and
the' );
writeln('instructions for the word processing program
"'nroff''.');
writeln;
writeln( 'An attempt has been made to reintroduce lower case
letters.' );
writeln('To obtain your output run '"'‘nroff scratch'' ');
writeln;
writeln( 'If all is not well edit scratch and run ®'‘'nroff
scratch'' again.' )
vriteln;
writeln('tihen all is correct get the hard copy output
by *);
writeln('running '‘nroff scratch Ilpr''. ');
writeln
end;
if FileStyle in ['E',‘'e'}
then
_ TwoCols(AddressFile,scratch);
writeln;
writeln;
writeln('FINISHED.');
writeln
end. (* of program Dibout.p *)

program Bibupdate(input,output,bank,dict,scratch,

dlist,PendingTray,TempBank) ;

(* A non-interactive program which moves the contents of

‘PendingTray"
at night.

to the bibliography. Clever systems run this program

TempBank is made external because it grows to be as large as bank.
Diagnostics are written to 'scratch'.

Written by Tony Heyes, Blind Mobility Research Unit,

Department of Psychology, The University,

Nottingham, U.K.. *)

const

LineLn = 70;
RowLn = 20;

15



heap = 200; else

HiTag = 10000; begin
stack = 50; if 1<21 then
NonDate = -1066; NewEntry.namell]l := strllet)
end
type string = packed array {l..LineLn] of char; end
item = record else .
authors,titlel,title2, begin

placel ,place2 : string;

date
keyl,key2
end;
wvord = packed array [
row = array [(1l..RowLn
TagIten = record
tag : in
entry :
end;
point = “CoreTagltem;
CoreTagltenm = record

: integer;
: string

1..20} of char;
1} of integer;

teger;
iten

TagEntry : Taglten;
next : point
end;
Gic = record
name : word;
nunbers row;
cont : boolean
end;
link = “dentry;
dentry = record
dline : dic;
next : link
ena;
var bank,TempBank,addition : file of item;

LastOne : item;

PendingTray,correction : file of Tagltem;

for i:=1+41 to 20 do

if

llewEntry.nameli) := ' ';
(* £fill up with spaces *)

InitialBuild
then
begin (* first entry *)
HewEntry.numbers(l) := n;
for i:=2 to RowLn do
NewEntry.numbers[il := 0;
NewEntry.cont := false;
new(g);
p~.dline := NewEntry;
p".next := nil;
first := p;
1 := 0;
InitialBuild := false
end
else
begin

OldEntry := first”.dline;
pt := first;

(* nove pt past all words before the new entry *)

while (pt”.next<>nil) and
(HewIntry.nane>=pt”.next”.dline.name) do
pt := pt”.next;

0ldEntry := pt”.dline;

same := OldEntry.name=lewEntry.name;
space := OldCntry.numbers(RowLnl)=C;

Alreadyllad := false:;

first,here,p,pt,newp : link; if same then

efirst,now,ept,e,enewp : point; begin

dlist,scratch : text; i := RowLn;

TenpDict,dict : file of dic; while OldEntry.numbers(il = 0 do
GotFromCore,dlistOK,InitialBuild,continue,move,same : boolean; i = i-1;

if Oldbntry.numberslil = n then
AlreadyHlad := true

n,Topltem,m,corr,reps,add,0ldTotal : integer;

procedure FromCore; end;
if not AlreadyHad then
var p : link; begin (* if keyword has author name only
beqgin lone dic|if (same and (not space))
writeln(scratch,® Fromcore'); then
rewrite(dict); begin
GotFromCore := true; (* new entry already in dict but no space in the string *)
£ = tirst; OldEntry.cont := true;
vhile p<>nil do pt®.dline := OldEntry
begin end;
dict” := p~.dline; if same and space
put (dict); then
p := p".next begin
end (* new entry already in dict AND space in the number string *)
end; (* of FrunCore *) i:=0;
repeat
procedure build{entry : item;n : integer); i = i+l

(* TO BUILD THE DICTIOUARY *) until OldEntry.numbers(il=0;

O1dEntry.numbers[i] := n;

ver str : string; pt®.dline := OldEntry
tlewEntry,0ldEntry : cic; end
l,1ct,line,i : integer; else
same,space,Alreadyllad,liorcFound, Lastiiora : boolean; begin
begin (* a new word for the dictionary OR a repeat of an old word *)
for line:=1 to 3 do NewEntry.numbers(l] := n;
begin NewEntry.cont := false;
case line of for i:=2 to PRowLn do
1: str := entry.oauthore; NewEntry.numberslil := 0;
2: str := entry.keyl; nev(newp) ;
3: str := entry.key2 nevp”.dline := lNewEntry;
end; if lewEntry.name<first”.dline.nane
1l := 0; then
let := 0; begin (* new head of the list *)
if not ((stri{ll=' ")and(strl(2}=' ")) nevp”.next := first;
then first := newp;
repcat (* not empty line *) end
let := let+l; else
LastWord := (((strlletl=' ') and begin (* slot entry into list *)
(strllet+l]l="' ")) newp”.next := pt”.next;
or (let=LineLn-1)); pt”.next := newp
flordFound := ((strlletl=',') or Lastlord); end
if not YfordFound end -
then end; (* of Alreadyllad *)
begin 1:=0
1 := 1413 end
if (1=1) and (strlletl=' ') then end
1 :=0 until Lastliord

16 Applications



end
end; (* of build *)

procedure nerge;
(* to merge dict in core with existing dict on file *)

var continue : boolean;
jejJ : integer;
NewEntry : dic;
begin
writeln(scratch,"'
rewrite (TempDict) ;
reset(dict);
(* copy to scratch with additions *)
pt := first;
continue := (not eof(dict)) and (pt”.next<>nil);
while continue do

Merge');

begin
if dict”.name<pt”.dline.name
then
begin
TempDict” := dict”;
put (TempDict) ;
get({dict);
continue := not eof{dict)
end;
if dict”.name>pt”.dline.name
then
begin
TempDict” := pt~.dline;
put (TempDict) ;
pt := pt”.next;
continue := pt<>nil
end;
if dict”.name=pt”.dline.name
then
begin .
dict”.cont := true;
TempDict” := dict”;
put (TempDict) ;
get(dict);
continue := not eof(dict)
end
end;
‘hile not eof(dict) do
begin

TempDict”™ := dict”;
put (TenpDict) ;
get(dict)

end;

while pt<>nil do

begin
TerpDict” := pt~.dline;
put (TenpDict) ;
pt := pt”.next

end;

rewrite(dict);
reset (TempDict) ;
(* copy back to dict and squeeze *)
while not eof (TempDict) do
begin
NewEntry := TempDict”;
if (NewEntry.numbers{RowLn]>0) or (NewEntry.cont=false)
then
begin
dict” := NewEntry;
put(dict);
get(TempDict)
end
else
begin
get(TempDict) ;
if not eof(TempDict)
then
bedin
for j:=2 to RowLn do
if NewEntry.numbers(jl=0
then
begin
HewEntry.numbers(j] := TempDict”.numbers(1];
for jj:=1 to RowLn-l do
TempDict” .numbers[jjl := TempDict”.numbers(jj+1]
TempDict”.numbers[RowLn] := 0
end;
if TempDict”.numbers(l]=0
then
begin
lewEntry.cont := false;
get{TempDict);
dict™ := lewEntry;

Applications

put(dict)

end

else

begin
dict” := NewEntry;
put (dict)

end
end
end
end;
rewrite(TempDict)
end; (* of mcrge *)

begin (* NAII! PROGRAN *)
reset(PendingTray) ;
resct(bank)};
dlistOk := false;
rewrite(scratch);
writeln(scratch);
writeln{scratch, 'lo new additions.');
writeln(scratch);
GotFromCore := false;
corr
reps
add := 0
Toplten
reset(dl
if dlist” then dlistOK := true;
if eof (PendingTray)
then
begin
if not dlistOK then
while not eof(bank) do

= 0;
:= 0;
i
i

v}
)

i
;
(2]

st

begin
Toplten := Topltem + 1;
get(bank)}
end
end
else
begin

(* divide PendingTray into corrections and additions *)
revrite(correction);
revrite(additions);
rewrite(dict);
rewrite(scratch);
dlistOK := false;
while not eof (PendingTray) do
if PendingTray”.tag<lliTag

then
beain
write(correction,PendingTray”);
corr := corr+l;
get(PendingTray)
end
else
begin
write(addition,PendingTray”.entry);
add := add+l;
get(PendingTray)
end;

reset(correction);
writeln{(scratch,'Corrections ',corr :5,' Additions

whilc not eof({correction) do
begin
(* order correction into core in batches of 'stack' *)
vriteln(scratch,'To deal with corrections');
mark (now) ;
n o= 1;
new(e);
e”.TagEntry := correction”;
e”.next := nil;
efirst := e;
get(correction};
while (not cof(correction)) and {n<stack) do
begin
n := n+l;
new (enevp) ;
enevp” .TagEntry := correction”;
if correction”.tag<efirst”.TagEntry.tag
then
begin {(* new head of list *)
enewp”.next := efirst;
efirst := ecnewp
end
else
begin
(* move pointer ept to correct place, slot in new item *)
ept := efirst;
while (ept”.next<>nil) and

(correction”.tag>=ept”.next”.TagEntry.tag)

17



do
ept := ept”.next;
if correction”.tag=ept”,TagEntry.tag
then
ept”.TagEntry := correction”
(* replace with later correction, this is why items are sorted in
this way *)
else
begin
enewp”.next := ept”.next;
ept”.next := enewp
end
end;
get(correctjon)
end; (* n=stack or eof(correction) *)
write(scratch,'Corrections processed in ');
writeln(scratch,'this batch ‘',n :5);
(* first batch of items from 'correction'
(* now read bank to TempDank making changes from core.

Itens are labelled for later extraction by making the

date = lionDate.

Replacenent items are passed to join additiongs., *)
write(scratch,'Copy bank to TempBank ....');
rewrite(TempBank) ;
reset(bank);
0ldTotal := 0;
ept := efirst;
while not eof(bank) co

begin
OldTotal := OldTotal+l;
if (ept<>nil) and (ept”.TagEntry.tag=0ldTotal)
then (* we have found one to correct *)
begin
if ept”.TacEntry.entry.date<>NonDate
then (* ie, it is not empty *)
begin
(* Replacement item written to addition file *)
write(addition,ept”.TagEntry.entry);
reps := reps+l
end;
bank”.date := lonDate;
write(TempBank,bank”);
get(bank) ;
(* llaking the date = lNonDate will remove the item when
the last batch of corrections are processed *)
ept := ept”.next;
end
else
begin
write(TempBank,bank”);
get(bank)
end
end;
release(now);
writeln(scratch,' 0.K.');

(* read TempBank back to bank *)
write(scratch, 'Copy TempBank to bank «...');
rewrite(bank);
reset(TempBank);
while not eof (TempBank) do
if eof(correction) and (TempBank”.date=llonDate)
then
get(Temnpbank)
else
begin
write(bank,TempBank™) ;
get(TenpBank) ;
end; (* of reading back to bank *)
writeln(scratch,' O.K.');
rewrite(Tenpbank)
cnd;  (* return for nore corrections *)

(* renoves corrected items *)

revrite(correction);
reset(addition);
wvhile not eof(adgdition) do
begin
(* order zdditions alphabetically into core in batches of 'stack' *)
vriteln(scratch,'To deal with additions.'):
if reps>0
then
writeln(scratch,'These include
' reglacerents.');

‘,reps :5,

mark (now) ;

n = 1;

nev(e);

e”.TagEntry.entry := addition”;
e”.next := nil;

efirst := e;
get({addition);

18

nov in core and ordered *)

while not eof(addition) and (n<stack) do
begin
n := n+l;
newv {enewp) ;
enevp”.TagEntry.entry := addition®;
move := ((enewp”.TagEntry.entry.authors
> efirst”.TagEntry.entry.authors) or
((enewp”.TagEntry.entry.authors
= efirst”.TagEntry.entry.authors) and
(enewp'.TagEntry.entry.date
> efirst”.TagEntry.entry.date)));
if not move
then (* new head of list *)
begin
enevp”.next := efirst;
efirst := enewp
end
else
begin
(* move pointer ept to correct place, slot in new item *)
ept := efirst;
while (ept”.next<>nil) and
((addition”,authors
> ept’.next’.TagEntry.entry.authors) (34
((addition”,authors

= ept”.next”.TagCntry.entry.authors) and
(addition”.date
> ept”.next”.TagEntry.entry.date))) do
ept := ept”.next;

enevp” .next := cpt”.next;
ept”.next := encwp
end;

get(addition)

end; (* n=stack or cof(addition) *)
writeln(scratch,'Additions processed in this batch ',n :5);
(* nowv read bank to TempBank naking additions from core *)
write(scratch, 'Copy bank to TempBank ....'};
reset(bank) ;
revrite(TempEBank) ;
ept 1= efirst;
continue := (not eof(bank)) and (ept<>nil);
while continuc do
begin
if ((bank”.authors < ept”.TagEntry.entry.authe or
({bank”.authors = ept”.Taglntry.entry.authc and
(bank”.date < ept”.TagEntry.entry.date)))
then
begin

write(TempBank,bank”) ;
get(bank);
continue := not eof(bank)
end
else
begin
write(TempBank,ept”.TagEntry.cntry);
ept := ept”.next;
continue := ept<>nil
end
end; (* of the merging of the core and the file *)
while not eof(bank) do
begin
write(TempBank,bank™) ;
get(bank)
end;
while ept<>nil do
begin
write(TempBank,ept”.TagEntry.entry);
ept := ept”.next
end;
LastOne := bank”;
(* assigned to give LastOne a starting value *)
writeln(scratch,' 0.K.");

(* now copy back to bank *)
write(scratch,'Copy TempBank to bank ....');
reset(TempBank) ;
rewrite(bank);
release(now) ;
while not eof(TempBank) do
begin
sane := ((TempBank”.,authors=LastOne.authors)
and (TempBank”.titlel=LastOne.titlel)
and (TempBank”.title2=LastOne.title”
and (TempBank”.date=LastOne.date));
i1f not same
then
vrite(bank,TenpBank”) ;
LastOne := TempBank”;
get(TempBank)
end;

(* rejects duplicates *)

Applications






